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In this paper, a numerical study of the dynamics of a perturbed vortex ring is con-
ducted using Coherent-vorticity Preserving (CvP) Large-Eddy simulation1 spanning
circulation based Reynolds numbers ReΓ in the range 7, 000-700, 000. The vortex line
corresponding to the vortex ring is defined using a parametric equation and perturbed
with amplitude in the range of 10%-20% of the radius. Two types of perturbations
are tested: sinusoidal (mode 10) and multi-mode. The Biot-Savart law is employed
to define the corresponding induced velocity field. High levels of perturbation yield
a transient bursting stage of the original vortex ring and the formation of a new one.
The generation of dipoles and different types of vortex reconnection are accurately
captured by the Cvp-LES. Vortex bursting is observed with large amplitude pertur-
bations at the beginning of simulations. The ejection of dipoles at the inner and
outer sides extracts vorticity from the vortex ring which loses its coherence imme-
diately. Dipoles keep growing and the vortex core intensifies in the form of tangled
vortex threads up to breakdown, leaving stable dipoles. Dipoles go through a viscous
cancellation process and the vortex core is then slightly restored. The reasons of
the persistence of coherent structures in all types of perturbations are analyzed. An
axial flow, i.e. a flow along the vortex line is detected with multi-mode perturbation
simulations, which is driven by the pressure gradient resulting from ejected dipoles
and develops from nonuniform locations of pressure sources.

I. Introduction

Vortex rings are ubiquitous flow structures, which play a fundamental role in applications involving
turbulent jets or rotor wake dynamics. Under certain sinusoidal perturbations of the vortex line, it
has been shown analytically by Widnall & Sullivan (1973)2 and Widnall, Bliss & Tsai (1974)3 that the
structure can become unstable. Further numerical studies conducted by Shariff et al.(1994) 4 at various
Reynolds numbers reproduced the azimuthal instability and shed light on an amplification mechanism
of mean swirl in the early nonlinear stage. Dazin et al.,56 studied vortex ring instabilities using an
experimental setup and observed a transfer of energy from the unstable modes to second azimuthal
harmonics. Recently, a direct numerical simulation at ReΓ=7500 was conducted by Bergdorf et al.,7
investigating the origin and topology of the secondary vortex structures during the nonlinear stage of
vortex ring decay.

In the present paper, we introduce a numerical setup to study numerically vortex ring instability
under large perturbations. A vortex ring path is defined using a parametric equation, and the corre-
sponding velocity field is found using the Biot-Savart law, coupled to a core smoothing function that
allows to accurately define the size of the vortex core radius. A recently developed LES model,1 which
is able to capture accurately the dynamics of transitional vortical flows with at minimal grid resolution
is employed.
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II. Methodology

A. Governing equations

The flow motion considered in the present study is assumed to be governed by the set of compressible
Navier-Stokes equations:

NS(w) =
∂w

∂t
+∇ · [Fc(w)− Fv(w,∇w)] = 0, (1)

where w = (ρ, ρU, ρE)
T is the vector of conserved variables ρ, U and E, density, velocity and total

energy respectively, and (∇w)ij = ∂wi/∂xj its gradient. The viscous and convective flux tensors
Fc,Fv ∈ R

5×3 read

Fc =

⎛
⎜⎝ ρUT

ρU⊗U+ pI

(ρE + p)UT

⎞
⎟⎠ , and Fv =

⎛
⎜⎝ 0

τ

τ ·U− λ∇TT

⎞
⎟⎠ , (2)

where T is the temperature, p is the pressure, λ is the thermal conductivity of the fluid and I ∈ R
3×3

is the identity matrix. For a Newtonian fluid, we have

τ = 2μS, (3)

where μ is the dynamic viscosity and

S =
1

2

[
∇U+∇UT − 2

3
(∇ ·U) I

]
. (4)

The ideal gas law is considered for the closure of the system of equations, namely,

p = (γ − 1)

(
ρE − 1

2
ρU ·U

)
, (5)

where γ is the heat capacity ratio.
The LES equations are obtained by applying a low-pass filter to the Navier-Stokes equations.8 The

spatial filtering operator applied to a generic quantity φ reads

φ(x, t) = g(x) � φ(x), (6)

where � is the convolution product and g (x) is a filter kernel related to a cutoff length scale Δ in
physical space.9 The compressible case requires density-weighted filtering approaches. The density-
weighted or Favre filtering operator is defined as

φ̃ =
ρφ

ρ
. (7)

In the present study, the compressible LES formalism introduced by Lesieur et al.10–12 is adopted
yielding the following set of filtered compressible Navier-Stokes equations:

NS(w) = ∇ · FSGS(w,∇w), (8)

where w =
(
ρ, ρŨ, ρẼ

)T
is the vector of filtered conservative variables.

The SGS tensor FSGS is the result of the filtering operation and it encapsulates the dynamics of
the unresolved sub-grid scales, and is modeled here using the eddy-viscosity assumption:

FSGS(w,∇w) =

⎛
⎜⎝ 0

2μtS

−μtCp

Prt
∇T̃T

⎞
⎟⎠ , (9)
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where S is the shear stress tensor computed from equation (4) based on the Favre-filtered velocity Ũ,
Prt is the turbulent Prandtl number, which is set to 0.5,13 Cp is the heat capacity at constant pressure
of the fluid and μt is the eddy-viscosity which depends on the chosen sub-grid model.

In the present work, the CvP-Smagorinsky closure is adopted, which yields accurate results for
transitional and high-Reynolds number flows.1 The eddy viscosity for this closure reads:

μt = ρf(σ)(CSΔ)2
√
SijSij (10)

where CS = 0.172 is the Smagorinsky constant, Δ is the grid size and f(σ) is the CvP turbulence sensor
built from the ratio σ of test-filtered to grid-filtered enstrophy. This sensor attenuates the intensity of
SGS dissipation of transitional turbulence or coherent vortices.

B. Numerical method

The compressible, Favre-filtered Navier-Stokes equations are solved using a 6th order compact finite
difference scheme solver originally written by Nagarajan et al.,14 currently under development at
Purdue University. The solver is based on a staggered grid arrangement, providing superior accuracy
compared to a fully collocated approach.15 The speed of sound is adjusted so that the local Mach
number does not exceed 0.1 for the computations performed in the present study, effectively simulating
near incompressible flow dynamics. The time integration is performed using a third order Runge-Kutta
scheme.

III. Problem Formulation

Simulations are performed in a cubic computational domain Ω = [0, 4R]3, where R = 0.125. The
vortex ring is initialized at the center of the domain. Its vortex core radius is rc/R = 0.1 and its
circulation is Γ = 0.01. The Reynolds number based on the circulation is defined as ReΓ = Γ/ν,
where ν is the kinematic viscosity. Grid size is refined for increasing ReΓ, leading to the definition of
5-10 points inside the vortex core. The LES model considered is the CvP approach1 which has been
found to be successful for the prediction of transitional flows on coarse grids. A non-dimensional time
t∗ = t Γ/R2 is considered for the study, where t is the flow time.

In this section, different perturbations are set up for the numerical study of vortex rings. The
original vortex ring filament is initialized in a periodic, cubic box. The filament equation reads:

X(θ) = [R cos(θ), 0, R sin(θ)] (11)

where R is the radius of the ring. Different levels of sinusoidal perturbation are added to the
original path as described in Table 1, where A is the amplitude and n is the number of wavelengths
along the ring circumference, related to the wavenumber via n = kR. Case A and B are initialized
with a single mode corresponding to n = 10, as in Fig. 1(a), while Case C is defined with the sum of
a set of N Fourier modes (here N= 12).An is a random variables which values are in [−1, 1] and the
absolute value of Bn is calculated according to A2

n +B2
n = 1, with its sign generated randomly. Thus

the amplitude of each mode is 1 and a random phase can be obtained. To avoid a potential nonphysical
perturbation, the final amplitude is confined to 0.1R ∼ 0.2R, as in Fig. 1(b). All perturbation angles
are set to 45 degrees with respect to the propagation direction described in Fig. 1(c).

Xc(θ) = Xc(θ)[1 +Af(θ)] (12)

f(θ) =

N∑
n=1

Ansin(nθ) +Bncos(nθ) (13)
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case letter mode(n) amplitude A θ (degrees) color code

(A) 10 0.1R 45 red
(B) 10 0.2R 45 blue
(C) 1∼12 0.1R ∼ 0.2R 45 black

Table 1. Summary of test cases: A: initial perturbation with different amplitudes, n: number of waves
on the circumference

case number ReΓ grid size symbol

(I) 7,000 1923 ◦
(II) 70,000 2883 �
(III) 700,000 3843 �

Table 2. Reynolds number, grid size and symbol for each perturbation form

Figure 1. Sketch of the initial condition and parameters for the presently considered numerical setup.

The velocity field induced by the vortex filament is determined by the Biot-Savart law.

u(x) = − Γ

4π

ˆ
Kv

(x−X(θ))× t(θ)

|x−X(θ)|3 dθ (14)

where t(θ) is the tangent vector to the helical filament, Γ is the circulation and Kv is a function
allowing to define the shape of the vortex core16 and reads:

Kv =
|x−X(θ)|3(

|x−X(θ)|2k + r2kc

) 3
2k

(15)

where rc = 0.05d is the core radius. The case k = ∞ corresponds to a Rankine vortex. The value
of k = 4 is adopted to achieve a smooth transition between the inner, rotational flow and the outer,
potential flow.

IV. Results

A. Stable case with low amplitude perturbation

In this section, we study the dynamics of the perturbed vortex rings.
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For the cases with small initial perturbation (single mode) and low Reynolds number (case A,B-I),
the general process of evolution can be shown in Figure 2, visualized by the iso-vorticity contours for
various times corresponding to the generation of the secondary structure.

Those structures consist in pairs of counter-rotating vortices, namely dipoles, generated at the
crests and peaks of the initial perturbation shortly after the beginning of the simulation (t∗ = 0.32).
The dipoles wrap around the vortex ring as the original perturbation is smeared out. At t∗ = 1.28
the original pattern is restored and the dipole structures becomes stable, then the vortex ring keeps
flattening due to diffusion. The dipoles quickly dissipate and the growth of a higher mode with respect
to the original perturbation is detected (t∗ = 12.8).

Case B-I exhibits a similar pattern with more intense evolution, in which reconnection happens at
the tail and head of dipoles as in Figure 3(a). These structures are described as hairpin vortices ejected
from the vortex ring by Archer et al.17 18 , but the present study suggests that these structures are
rather the product of reconnection of dipoles, which are the real structures ejected.

Figure 2. The Q-criterion contours (The threshold is set to yield the best visualization at
QΓ4R−6=1907) of Case A-I for various times corresponding to the evolution of the vortex ring with
initial perturbation. Plots of t∗ = 12.8 in box are generated with different Q iso-surfaces ( left
:QΓ4R−6=1907,right:QΓ4R−6=3814).

The reconnection also happens for higher Reynolds number case (A-I, A-III, B-II, B-III) and higher
amplitude perturbation (B-I). For higher Reynolds number cases, the reconnection along anti-parallel
lines also happens with the same dynamics shown in Figure 3(b).

B. Unstable case with high amplitude perturbation

Vortex breakdown in the sense of rupture of continuity of the main vortex line is only detected in Cases
B-II and B-III, where the vortex evolution is totally different from others. Figure 4 shows two Q iso-
surfaces with distinct levels: QΓ4R−6=76300 indicated in red; QΓ4R−6=7630 in transparent blue.
Dipoles begin to develop at the beginning of the simulation and the intensity of core decrease due to
the ejection (t∗ = 0.32). When dipoles become stable, the core region reorganizes itself in a seemingly
coherent single vortex but with isolated discontinuities. The intensity of core region increases up to
t∗ = 1.28, at which point breakdown occurs and core region regenerates into a collection of multiple
vortex threads. At t∗ = 2.56, the vortex core is almost dissipated and ejected dipoles show higher
intensity. At t∗ = 3.52, the Q-isosurface with high values (red) cannot detect the vortex core, with
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Figure 3. Different types of reconnection among dipoles. (a)the reconnection takes place at the tail
and head (Case B-I,t∗ = 1.92, QΓ4R−6=191) (b) reconnection along anti-parallel vortex lines (Case A-
I,t∗ = 1.58, QΓ4R−6=191)

Figure 4. Vortex breakdown of Case B-III. Red solid surface: QΓ4R−6=76300; blue transparent surface:
QΓ4R−6=7630

the exception of a few isolated strands; yet at t∗ = 4.8, a concentration of vorticity on the vortex core
is captured again, although weak and only present on the crest part of original perturbation. t∗ = 9.6
shows the final status, similarly to what happens for the low amplitude cases, the vortex ring keeps
traveling with secondary structures dissipating gradually.

The enstrophy is defined as ξ = ω · ω/2, where ω is the vorticity vector. This quantity is sensitive
to the dynamics of the small scales in the flow as these carry a significant amount of vorticity. The
temporal evolution of volume-averaged enstrophy is shown in Figure 5, from where bursting can also
be observed . The peak at t∗ = 2.6 is clearly correlated to Figure 4. On one hand, the peak may
represent the most intense small scale structures during/after bursting; on the other hand, it may
result form the interaction of anti-parallel dipoles. The contact of dipoles is only detected in Case B-II
and B-III, which results from the initial perturbation. A plateau can be observed in the evolution of
enstrophy for Case B and Case C, which means the small scales can be sustained for a long time, and
have not begun to dissipate in current simulations.
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Figure 5. Evolution of enstrophy. Red: Case A, small amplitude; Blue: Case B, large amplitude; Black:
Case C, multiple modes

C. Persistence of coherent structures

One-dimensional energy spectra are computed at t∗ = 12.8 (final state in current simulations) in the
vortex propagation direction −y and averaged in x − z planes and shown in Figure 7. A −5/3 slope
can only be observed at ReΓ = 700, 000. Two regions of energy transfer can be observed, which may
result from the inhomogeneity of turbulence. For all Reynolds numbers, the energy of Case B is always
lower than Case A and Case C, which results from the intense energy dissipation occuring during the
bursting process. A bump is observed at ReΓ = 7, 000, which evolves in time and the number of bumps
increases as well. This mechanism has yet to be explained in future studies.

Case (B-I) does not experiences the bursting process, but also shows lower vorticity magnitude in
comparison with A-I and B-I. This perhaps results from the difference in initial velocity field. The large
displacement of the vortex line in the y direction behaves like anti-parallel vortex tubes, which undergo
viscous cancellation, especially for higher perturbation amplitudes (Case B). The induced velocity is
canceled in Case B more than in Case A, even if the circulation is the same in both cases. Since the
structures of the perturbation are asymmetric in Case C, the interaction region of the anti-parallel
tubes is smaller than Case A and B. This means that the initial flow field of Case C is slightly stronger
than in Case A and B, and therefore results in higher vorticity even after a period of decay via viscous
dissipation.

Another possible explanation can be proposed through the study of the helicity, or the helicity
density h, which is defined as h = u ·w, where u is the velocity vector and w = ∇× u is the vorticity
vector. Hussain19 has proposed that the helicity h can inhibit the Kolmogorov cascade. According to
the trigonometric identity Eq. 16, wherever u · w is large, u × w is small for given amplitude of u
and w. The nonlinear term u×w in the momentum equation Eq. 17 is one of the terms responsible
for the cascade from larger to smaller scales. Thus high helicity regions are expected to display lower
dissipation levels and therefore to persist longer. This perhaps explains why dipoles, showing high
helicity, can persist for a long time along the vortex ring.

|u ·w|2 + |u×w|2 = |u|2|w|2 (16)
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∂u

∂t
= −u×w −∇(

p

ρ
+

u2

2
) + ν∇2u (17)

Figure 6. Iso-surfaces of Q-criterion and vorticity magnitude contours at t∗ = 12.8 showing final status
of evolution. Left: ReΓ = 7, 000 visualized by QΓ4R−6=5700 right: ReΓ = 700, 000 with QΓ4R−6=30500.

D. Axial flow

The helicity contains information regarding the angle between vectors u and w. For vortex ring, high
helicity implies the presence of axial flow, the flow directed along the vortex line. A weak axial flow
is observed in all cases, and is only local in Cases A and B, as shown in Figure 6. Intense axial flow
generates due to the non-uniform distribution of perturbation in Case C.

The generation of axial flow is explained in Figure 8; a slice cut of the vortex ring at the left cross-
section shows a flattening of the structure compared to the right cross section in the crest of waves.
Helicity exists initially on both sides of vortex tube, as can be seen in Figure 8(a), with opposite signs
but respecting symmetry. Vortex sheets quickly roll up in multiple layers while the axial flow is not
increasing as seen in Figure 8(b). At the same time the high wavenumber region begins to develop
dipoles in Case A and B, the contour of which shows reduced layers because of the wider influence
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Figure 7. 1D energy spectra computed at t∗ = 12.8 in the vortex propagation direction y and averaged
in planes x− z. Red: Case A, small amplitude; Blue: Case B, large amplitude; Black: Case C, multiple
modes

region of dipoles . In Figure 8(c), the flattened part still sustains symmetry while the contour near
dipoles shows stronger negative helicity. This results to the ejection of the dipoles from the original
vortex ring, which leads to lower vorticity and thus higher pressure in the vortex core. The pressure
gradient drives a downward axial flow. While the axial vorticity goes counter-clockwise in this view, a
dominant negative helicity can be observed. In Figure 8(d), the asymmetric right cross section restores
the symmetry because of the generation of dipoles on the other side of the plane. Therefore we can
conclude that the axial flow is excited by the pressure gradient inside the vortex core, resulting from the
ejection of dipoles. Dipoles region ,i.e. high curvature part generates axial flow in opposite direction
and then the high wavenumber part cancels such axial flow in a symmetric way so the helicity can
only be observed locally, as shown in Figure 6(B-III). The flattened part allows for the development
of axial flow and traveling of helical structures .

Figure 8. Generation of initial axial flow. From top to bottom, t∗ = 0.064, 0.16, 0.32, 0.48. Both vortex ring
and slices are colored by helicity.

The developed axial flow travels along the vortex ring in both direction. The helical mode is
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activated and helical structures can be observed in Figure 9(a). Figure 9 shows the process of two
helical structures colliding and then passing by. Figure 9(a) shows the cross section of two helical
structures with opposite sign traveling with opposite z direction velocity. When colliding, the vortex
iso-surface is largely diffused and no clear z direction velocity can be captured as in Figure 9(b). At
the same time, some parts of the helical structure have finished collision process and keep traveling,
and are defined as the "passing by" part. Figure 9(c) shows the end of this collision, with the helicity
intensity slightly decreased. Yet since the traveling happens on the vortex loop, this kind of collision
will keep happening. Figure 9 only shows one collision on the vortex ring at this moment, yet in fact
several collisions can happen at the same time at different locations of ring.

The effect of such collisions is still largely unexplored. Future investigations will focus on explain-
ing how persisting coherent helical structures stabilize the flow field, beyond the canceling velocity
observation.

Figure 9. Helical structures keep traveling along vortex ring and colliding. From left to right, t∗ =
4.48, 4.8, 5.12. Vortex ring is colored by helicity while slice show z direction velocity.

V. Conclusion

In this work, the dynamics of vortex rings subject to large perturbations were studied by the means
of state-of-the-art LES computations. The numerical simulations of the vortex ring shows dissipation
and bursting processes in which secondary vortex structures are generated and developed.

Bursting process is only observed at high Reynolds number, and happens at the beginning of
simulations, together with an intense generation of secondary dipoles. The initial Vortex core loses its
original coherence and can only be visualized by multiple vortex threads, which dissipate faster than
dipoles. At the end of the simulation the core region shows a weakly restored coherence.

Three different types of perturbation show completely different evolution processes. The final states
of the present simulations are compared, and the explanation of persistent structures is believed to be
either the energy difference in initial velocity field or the reverse on energy cascade of helicity.

An important axial flow is observed for non-uniform perturbation cases. Helical instability develops
and generates helical structures which travel along the vortex ring, and collide yielding a slight decrease
in helicity, then keep crossing and traveling. The effect of the helicity and the collision is still unclear
and will be the topic of future investigations.
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