
Development of adaptive subgrid scale models based
on a large-scale vorticity sensor

J.-B. Chapelier1,∗ , C. Scalo1 and B. Wasistho2

1School of Mechanical Engineering and Aeronautical Engineering, Purdue University, IN, USA
2Kord Technologies, Huntsville, AL, USA

This paper introduces a new approach to Large-Eddy Simulation (LES) where
subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spec-
tral broadening, hence mitigated or deactivated in regions dominated by large-scale
and/or laminar vortical motion. The proposed coherent-vorticity-preserving (CvP)
LES methodology is based on the evaluation of the ratio of the instantaneous test-
filtered to resolved (or grid-filtered) enstrophy: σ = ξ̂/ξ. Values of σ ' 1 indicate
low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale
model. Values of σ < 1 span conditions ranging from incipient spectral broadening
σ . 1, to equilibrium turbulence σ = σeq < 1, where σeq is solely as a function of the
test-to-grid filter-width ratio ∆̂/∆, derived assuming a Kolmogorov’s model equilib-
rium turbulence spectrum. Eddy viscosity is fully restored for σ ≤ σeq. The proposed
approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity
model, is algorithmically simple, computationally inexpensive and extendable to non-
structured grids. LES of Taylor-Green vortex breakdown demonstrates that the
CvP methodology greatly improves the performance of traditional, non-dynamic dis-
sipative SGS models, capturing the peak of total turbulent kinetic energy dissipation
during transition. Similar accuracy is obtained by adopting Germano’s dynamic pro-
cedure albeit at more than twice the computational overhead. Finally, a CvP-LES
of a pair of unstable periodic helical vortices, representative of rotor-blade wakes, is
considered. The ability of the CvP methodology to dynamically sort the coherent,
large-scale motion from the smaller, broadband scales of the flow is demonstrated via
flow visualizations.

I. Introduction

In spite of the sustained increase in availability of computational resources, Large-Eddy Simu-
lation (LES) is still the only feasible approach for the numerical investigation of turbulent flows at
physically-relevant Reynolds numbers, which are are often out of reach for Direct Numerical Simu-
lations (DNS). The development of accurate and robust sub-grid scale (SGS) models extending the
envelope of attainable Reynolds numbers while containing the computational cost is therefore still a
warranted effort.

One shortcoming of traditional LES modeling approaches is their tendency to introduce excess SGS
dissipation in transitional or locally low-Reynolds-number regions, where the flow is well resolved, or,
similarly, impact the evolution of the large coherent vortices which may be on the verge of break-up
and transition to turbulence or coexist with finer-scale broadband vorticity. The Smagorinsky model,1
for example, attenuates velocity gradients at all scales of the flow, resulting in the undesired damping
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of coherent laminar vortices or transitional regions. Any accurate SGS model should therefore account
only for the energy transfer towards subgrid scales occuring only in the spectral neighborhood of
the cutoff wavelength,2,3 which is challenging for non-spectral-based numerical schemes or even local
spatial discretization numerics equipped with dynamic procedures (as discussed later).

A number of approaches aim at correcting the overly dissipative nature of SGS models. The
so-called Dynamic procedure and related approaches aim at determining dynamically the subgrid
model parameter, leading to an adapation of the subgrid dissipation for transitional or inhomogeneous
flows.4–8 Alternate multiscale approaches aim at applying a low-pass filter on the subgrid tensor in
order to reduce the influence of the subgrid dissipation on the large scales of the flow which carry
the bulk of kinetic energy. In particular, the high-pass filtered eddy viscosity of Stolz et al.9 or
the VMS approach introduced Hughes et al.10 have led to important improvement of the subgrid
models accuracy. Other authors have proposed to develop sensors attempting to discriminate between
laminar and turbulent regions.11–13 Another approach termed Coherent Vortex Simulation (CVS)
uses a wavelet-based decomposition to sort the coherent motion from the Gaussian component of the
solution identified as small-scale noise,14–17 adopting a signal-processing and statistical approach.

Purely numerical approaches have been proposed and rely on the use of regularization procedures
such as explicit filtering or addition of artificial viscosity to counter the high-wave-number-energy
accumulation occurring in low-dissipation numerical schemes.18–21

Other approaches, termed Implicit LES (ILES), aim at tailoring the numerical dissipation natu-
rally present in the adopted numerical discretization, to mimic the sub-grid dissipation deriving from
physical SGS models.22–24 Although resulting in almost no computational overhead, as no explicit
execution of subgrid models is needed, such techniques may introduce excessive dissipation,25,26 with
less flexibility than inherently non-dissipative numerical schemes equipped with subgrid models which
can be deactivated in dynamically selected regions of the flow. The latter will be the approach followed
in this study.

In fact, accurate results at a reduced computational cost have been obtained by coupling high-order
finite difference schemes and Dynamic models.27 Classic Dynamic modeling approaches, however,
increase cost, memory requirements and complexity of the implementation, associated with the test-
filtering of tensors and averaging of the dynamic parameter along directions of statistical homogeneity4
or flow path trajectories6 to obtain stable computations.

We propose in this paper to build a tool detecting the onset of spectral broadening in the flow with
a simple and computationally inexpensive turbulence sensor identifying regions of developed, locally
high Reynolds number turbulence requiring SGS dissipation. This approach can be seen as a new
dynamic approach, blending physics-based SGS modeling with a new scale-selective sensor based on
the evaluation of the sub-test-filter enstrophy content. By test-filtering vorticity rather than velocity,
a greater sensitivity to the emergence of small-scales in the flow is achieved. By evaluating the ratio of
grid- and test-filtered enstrophy, it is possible to quantify the relative small-scale energy content of the
flow to then mitigate SGS dissipation in non-turbulent, large-scale narrowband vorticity dominated
regions whre coherent or large-scale vortices are likely to be found. The sensor is hence able to
discriminate between gradients due to small scale vorticity (most likely broadband turbulence) and
large scale structures, which are not governed by inertial subrange transfer energy dynamics assumed
by most SGS models. Due to this property we refer to the proposed method as coherent-vorticity-
preserving .

The present approach has a number of advantages: (1) the sensor can improve the prediction perfor-
mance of any existing SGS model in transitional flows; (2) the sensor is based on local and instantaneous
flow values, allowing for a dynamic adjustment of the SGS dissipation; (3) the CvP technique is com-
putationally inexpensive, only requiring one addition test-filtering operation on the enstrophy field;
(4) algorithmically simple, not requiring any spectral decomposition of the flow and easily extendable
to unstructured meshes; (5) allowing for the run-time evaluation of the sub-filter length scale, based
on the instantaneous state of turbulence of the flow (not explored in the current study).

The outline of the paper is as follows. First, the LES formalism and numerical methods are detailed
in section II. The CvP technique is derived in section III. The various subgrid-scale models used in
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the study are reported in section III.B. Section IV features a study of the CvP technique considering
LES of transitional Taylor-Green vortex. The sensor is coupled to various traditional dissipative SGS
models, and compared to the classical Dynamic model. The approach is then applied to a periodic
double helical vortex configuration (section V), which is a model problem for rotor blade vortices.
The ability of the sensor function to sort the coherent structures from the broadband, small-scale
turbulence is also assessed with instantaneous visualizations.

II. Numerics

A. Filtered Navier-Stokes equations

In this work, the compressible fluid motion is simulated by discretizing the Navier-Stokes operator
NS (w), which can be cast in the form:

NS(w) =
∂w

∂t
+ ∇ · [Fc(w)− Fv(w,∇w)] = 0, (1)

where w = (ρ, ρU, ρE)
T is the vector of conserved variables ρ, U and E, density, velocity and total

energy respectively, and (∇w)ij = ∂wi/∂xj its gradient. The viscous and convective flux tensors
Fc,Fv ∈ R5×3 read

Fc =




ρUT

ρU⊗U + pI

(ρE + p)UT


 , and Fv =




0

τ

τ ·U− λ∇TT


 , (2)

where T is the temperature, p is the pressure, λ is the thermal conductivity of the fluid and I ∈ R3×3

is the identity matrix. For a Newtonian fluid, we have

τ = 2µS, (3)

where µ is the dynamic viscosity and

S =
1

2

[
∇U +∇UT − 2

3
(∇ ·U) I

]
. (4)

The ideal gas law is considered for the closure of the system of equations, namely,

p = (γ − 1)

(
ρE − 1

2
ρU ·U

)
, (5)

where γ is the heat capacity ratio.
The LES equations are obtained by applying a low-pass filter to the Navier-Stokes equations.28

The spatial filtering operator applied to a generic quantity φ reads

φ(x, t) = g(x) ? φ(x), (6)

where ? is the convolution product and g (x) is a filter kernel related to a cutoff length scale ∆ in
physical space.3 The compressible case requires density-weighted filtering approaches. The density-
weighted or Favre filtering operator is defined as

φ̃ =
ρφ

ρ
. (7)

In the present study, the compressible LES formalism introduced by Lesieur et al.29–31 is adopted
yielding the following set of filtered compressible Navier-Stokes equations:

NS(w) = ∇ · FSGS(w,∇w), (8)
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Filter ∆̂ α a b c d e

IMPL6 1.5∆ α 1
16 (11 + 10α) 1

32 (15 + 34α) 1
16 (−3 + 6α) 1

32 (1− 2α) 0

Table 1. Finite difference coefficients for the LES test filter.

where w =
(
ρ, ρŨ, ρẼ

)T

is the vector of filtered conservative variables.
The SGS tensor FSGS is the result of the filtering operation and it encapsulates the dynamics of

the unresolved sub-grid scales, and is modeled here using the eddy-viscosity assumption:

FSGS(w,∇w) =




0

2µtS

−µtCp

Prt
∇T̃T


 , (9)

where S is the shear stress tensor computed from equation (4) based on the Favre-filtered velocity Ũ,
Prt is the turbulent Prandtl number, which is set to 0.5,32 Cp is the heat capacity at constant pressure
of the fluid and µt is the eddy-viscosity which depends on the chosen sub-grid model.

The only assumption required to derive (8) is that the filtering operation (6) commutes with spatial
derivatives. The various filtering and discretization strategies adopted in the current work are outlined
in the following sections.

B. Numerical Discretization

The compressible, Favre-filtered Navier-Stokes equations are solved using a 6th order compact finite
difference scheme solver originally written by Nagarajan et al.,27 currently under development at
Purdue University. The solver is based on the staggered grid arrangement, providing superior accuracy
compared to a fully collocated approach.33

The time integration is performed using a third order Runge-Kutta scheme.

C. Filtering Strategy

The new LES model presented in this paper requires the implementation of a test-filter to sort the large-
scale motion from the small-scale, broadband turbulence. The generic formulation for the computation
of the test-filtered quantities read:

αfTF
i−1 + fTF

i +αfTF
i+1 = afi +

b

2
(fi+1 + fi−1) +

c

2
(fi+2 + fi−2) +

d

2
(fi+3 + fi−3) +

e

2
(fi+3 + fi−3), (10)

In the present study, the test filter considered is a sixth-order, spatially implicit compact filter
introduced by Lele,33 which coefficients are detailed in Table 1. This filter is characterized by non-zero
values of the parameter α ∈]−0.5, 0.5[, which controls the strength of the test filter. Weaker filters are
obtained using high values of α and vice-versa. For the present study, the parameter α is set to -0.4
which yields a large-scale selective test filtering. This filter is named IMPL6 for the rest of the paper.
Its filter length is ∆̂IMPL6 = 1.5∆, as defined by the cutoff wavenumber verifying G(k̂∆) = 0.5, where
k̂ = π/ ∆̂.
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III. Coherent-vorticity-preserving (CvP) Eddy Viscosity Correction

A. CvP Model derivation

In this section, a new idea for the developement of a turbulence sensor able to discriminate between
coherent and broadband turbulence is presented. This sensor is based on the detection of vorticity in
the range of scales located between the primary and test filter cutoff lengths. The primary filtering is
assumed to be performed by the computational grid and its cutoff length is ∆ = ∆, which is the cell
size. The test-filter is defined in order to isolate large scales and its cutoff length ∆̂ is therefore greater
than ∆.

k̂ k k

1/3

σ = 1

σ = σeq
ξ(k)

Figure 1. Schematic view of energy and enstrophy spectra for high Reynolds, isotropic turbulence.

In an idealized incompressible, fully developed isotropic turbulent flow, the energy cascade leads
to a transfer of energy from the large scales towards the small scales of the flow, which is associated
to a broadband energy spectrum scaling as k−5/3 in the inertial range. This particular distribution of
the energy in the spectral space implies that most of the energetic content of the flow is carried by the
large scales. At the contrary, the spectral content of enstrophy grows as k1/3, showing a peak at the
small-scale level. In developed turbulent flows, the enstrophy levels are therefore mostly governed by
the small-scale activity of the flow.

For a general derivation of the sensor, the present analysis is focused on the enstrophy ξ = ω ·ω/2.
The sensor is built following simple observations:

• If ˆ̄ξ ≈ ξ̄, no vorticity is detected at the small-scale level, yielding a local deactivation of the
subgrid model.

• At the contrary, if ˆ̄ξ � ξ̄, an intense small-scale vortical activity is detected, enabling local
application of the subgrid dissipation.

The next step consists in creating a function f of the ratio σ = ˆ̄ξ/ξ̄ which will act as a turbulence
sensor. Based on the first observation, a lower bound for f can be defined as f(σ = 1) = 0 when
the test filtered enstrophy is equal to the explicitly filtered enstrophy. The upper bound of f can be
calibrated by finding a value for σ assuming a situation of fully developed isotropic turbulence. In this
case, the expression of filtered enstrophy for isotropic turbulence reads:

ξ̄ =

ˆ ∞
0

k2E(k)Ḡ2(k)dk (11)
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Substituting the expression of the Kolmogorov spectrum, the value for σ corresponding to an equilib-
rium energy cascade becomes:

σeq =

´∞
0

(k∆)1/3Ĝ(k∆)Ḡ2(k∆)dk∆´∞
0

(k∆)1/3Ḡ2(k∆)dk∆
(12)

The upper bound for the sensor becomes f(σ = σeq) = 1. The following shape for f is proposed:

f(σ) =





1 for σ < σeq,

1
2

(
1 + sin

(
π
σeq−2σ+1
2(1−σeq)

))
for σ ∈ [σeq, 1],

0 for σ > 1.

(13)

This shape guarantees a smooth scale-separation between large scale vortices and small-scale tur-
bulence. It can be seen as multiple filtering levels embedded in one single function that shows low
values in regions dominated by large-scales and progressively higher values as the small scales develop
corresponding to higher wavenumbers.

An adaptation of the subgrid model intensity can therefore be achieved by multiplying the eddy
viscosity by the sensor function:

µ?t = fµt (14)

This particular expression will lead to a decrease of the eddy viscosity in transitional and smooth
regions of the flow and a progressive increase depending on the extent of the small-scale dynamics at
a given location.

We first derive the general expression of σeq assuming that the grid and test filters are sharp in
spectral space with respective filter lengths of ∆ and ∆̂. The ratio of the two filter lengths is defined
as r∆ = ∆̂/∆. This yields the following expression for σeq:

σeq =

´ π/r∆
0

(k∆)1/3dk∆´ π
0

(k∆)1/3dk∆
= r
−4/3
∆ (15)

This result is consistent with the fact that a smaller bandwith for test-filtered scales (high values of
r∆) lead to an activation of the sensor for a broader range of small-scales.

In the present paper, an additional tuning of the model calibration adapted to the present numer-
ical is performed, by considering the analytical expression of the test filter transfer function and the
interpolation operator. The numerical method employed requires the interpolation of the vorticity
components on the density locations in order to compute the values of enstrophy. This sixth order
compact interpolation operator is described in Nagarajan et al.27 This operator introduces a damping
of a part of the small-scale content of enstrophy, which can be taken into account in the calibration of
the model:

σeq =

´∞
0

(k∆)1/3Ĝ(k∆)Gint(k∆)dk∆´∞
0

(k∆)1/3Gint(k∆)dk∆
(16)

where Gint is the transfer function from the interpolant. The analytical expression of the test filter
transfer function defined in Section II.C is substituted in 16 to find the corresponding values of σeq.
This value is 0.71 for the IMPL6 test fiter.

B. Subgrid scale models

This section presents the various dissipative SGS models based on the eddy viscosity assumption that
are enhanced using the CvP methodology.
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1. Smagorinsky

The most commonly employed dissipative SGS model is the Smagorinsky model for which the eddy
viscosity reads:

µt = ρ(CS∆)2
√
S̄ : S̄ (17)

where CS is the Smagorinsky parameter, ∆ the filter width. CS is usually calibrated assuming an
isotropic turbulence field associated with the infinite Reynolds-number, equilibrum Komogorov spec-
trum. In this particular case, and assuming that the discretization is equivalent to a sharp filtering of
width ∆, the value of the Smagorinsky parameter is CS = 0.172.

2. Structure function

The second model considered is the structure function model introduced by Metais and Lesieur.34 For
this particular model, the eddy viscosity is built from the evaluation of the second order structure
function of the velocity vector:

µt = 0.105CK
−3/2

√
F̄2(∆) (18)

where CK is the Kolmogorov constant (here set to 1.5) and F̄2(∆) =
〈
||ū(x)− ū(x + r))||2

〉
||r||=∆

.
< · > is an averaging operator involving the values on the six points surrounding the actual point
where the structure function is computed. This model is expected to be less dissipative than the
Smagorinsky model in transitional regions and more dissipative in vortex cores.

3. Vreman

The last model considered for the evaluation of the turbulence sensor is the model introduced by
Vreman.35 This model displays interesting features such as the vanishing of the subgrid dissipation in
pure shear regions and correct near wall turbulence scaling. The eddy viscosity reads:

µt = ρ(2.5CS∆)2

√
Bβ

αijαij
(19)

where αij = ∂jui is the velocity gradient tensor, βij = αmiαmj and Bβ = β11β22 − β2
12 + β11β33 −

β2
13 + β22β33 − β2

23.

4. Dynamic model

In order to provide a comparison of the present approach with a well known, comparable approach,
the Dynamic Smagorinsky version of Spyropoulos and Blaisdell36 is implemented. For this model, the
eddy viscosity reads:

µt = ρCD

√
S̄ : S̄ (20)

where CD is the dynamic parameter, defined as follows:37

CD =
〈LijMij〉
〈MklMkl〉

(21)

where < · > is a spatial averaging operator acting over directions of statistical homogeneity and Lij ,
Mij are operators defined as in Spyropoulos and Blaisdell.36 The test filter used to computed Mij and
Lij is the IMPL6 compact filter described in section II.C .
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IV. LES of Taylor-Green vortex breakdown

A. Problem definition

The Taylor-Green vortex flow features the transition of initially large-scale vortices which progressively
breakdown into small-scale turbulence. This configuration is therefore of interest to assess the ability of
subgrid models to both characterize accurately transition and fully developed turbulencd. The initial
conditions are analytically defined in a cubic domain (2πL)3 and read:

U(x, 0) =



V0 sin (x/L) cos (y/L) cos (z/L)

−V0 cos (x/L) sin (y/L) cos (z/L)

0


 , (22)

p (x, 0) = p0 +
ρ0V

2
0

16
[cos(2x/L) + cos(2y/L)] (cos(2z/L) + 2) . (23)

ρ (x, 0) = ρ0. (24)

All the relevant quantities are normalized by the reference length L, velocity magnitude V0 and den-
sity ρ0. The Reynolds numberRe = ρ0V0L/µ0 is case-specific and the Mach numberM = V0/

√
γ P0/ρ0

is fixed to the value 0.1, leading to mostly incompressible dynamics. The state of turbulence is mon-
itored by evaluating the temporal evolution of the volume-averaged total kinetic energy E and the
dissipation rate ε:

E(t) =
1

2V

ˆ
V

u(x, t) · u(x, t)dx (25)

ε(t) =
dE(t)

dt
(26)

The temporal evolution of spatially integrated subgrid dissipation εSGS is considered as well to deter-
mine the intensity of the modeled subgrid scales introduced by each LES models.

εSGS(x, t) =
1

V

ˆ
V

µtS : Sdx (27)

B. Evaluation of the sensor accuracy

In this section, the accuracy of the CvP approach coupled with the Smagorinsky model is evaluated
in comparison with the Dynamic model. The Reynolds number is set to 5000 and the DNS performed
by Chapelier and Lodato13 featuring 4803 degrees of freedom is chosen as the reference computation.
The LES discretization features 723 grid points and computations are performed with the baseline
Smagorinsky model, the new model coupling the turbulence sensor and Smagorinsky, the Dynamic
model and without SGS model (termed no model computation). It is notable that the resolution is
more than six times coarser in each direction for the LES discretization when compared to the reference
DNS.

Figure 2 depicts the evolution of mean turbulent kinetic energy (or TKE) and dissipation for
the three LES computations and the DNS. The DNS energy is filtered using a spectral sharp cutoff
filter corresponding to the LES grid size. The DNS filtered dissipation is obtained by the means
of the temporal derivative of the filtered DNS energy. The no-model computation lacks dissipation
which leads to a blow-up of the TKE and negative values of dissipation. The Smagorinsky, at the
contrary, introduces an excessive amount of subgrid dissipation which impacts the development of the
small-scale vortices in the flow, as seen on the evolution of the dissipation. The Smagorinsky model
based on the new sensor developed successfully improves the baseline model and provides an accurate
prediction of the evolution of both quantities. Figure 3 presents the temporal evolution of the mean
values of the subgrid dissipation and f . The subgrid dissipation for the sensor and dynamic models is
efficiently lowered at the beginning of the computation as opposed to the Smagorinsky computation
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which introduces significant amounts of dissipation affecting the dynamics of the flow. It is found
that f(σ) is low at the beginning of the computation, showing that the sensor successfully detects the
presence of large coherent vortices and mitigates the subgrid dissipation accordingly.

0 5 10 15 20
tV0/L

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
/V

2 0
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723 Dynamic
4803 Filt. DNS

0 5 10 15 20
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Figure 2. Evolution of the turbulent kinetic energy and dissipation for the LES of the Taylor-Green
vortex.
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Figure 3. Temporal evolution of the subgrid dissipation (left) and the mean dynamic parameter defined
as the factor of the classical Smagorinsky eddy viscosity (〈f〉 for the sensor and CD/(CS∆)2 for the
Dynamic model)(right) for the LES of the Taylor-Green vortex flow.

The energy spectra between tV0/L = 8 and tV0/L = 20 are plotted in Figure 4. At t = 8, near the
peak of enstrophy, while all models provide an good approximation of the large-scale dynamics, the
small-scale energy is significantly damped for the Smagorinsky computation. The Dynamic and CvP
computations improve greatly the behavior of the Smagorinsky model and show a good match with
the DNS at the small-scale level. The CvP-LES approach is slightly more accurate than the Dynamic
model in the midrange of the energy spectrum. The two models also exhibit a slight high-wavenumber
pile-up of energy, more pronounced for the Dynamic model. This phenomenon due to aliasing errors is
probably the cause of the excess of mean enstrophy found for the Dynamic model computation. At later
times, the Smagorinsky model shows an imbalance of spectral energy distribution, with a corresponding
overestimation and damping of the large and small-scale energy respectively. The strong damping of
small-scale energy is likely to create a bottleneck effect that blocks the energy transfers, causing such
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a spectral energy imbalance. The energy spectra at late times are more accurate for the Dynamic and
CvP models, and the CvP in particular leads to an excellent representation of the large-scale energy
for long time integration (especially seen at t = 16).
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Figure 4. Energy spectra at various times for the LES of the Taylor-Green vortex at Re = 5000. Subgrid
models comparison using a 723 grid.

C. Subgrid models efficiency

In this section, the costs of the different subgrid modeling approaches adressed in the previous sec-
tion are assessed in terms of CPU time. The calculations on the 723 where performed on parallel
architectures using 16 computational cores. For the determination of the models efficiency, sample
computations are run without any code output which could slow down artificially the performance
of the runs. The no-model CPU time is chosen as the reference as it is the faster run. Table 2 re-
port the relative CPU times for the no-model, Smagorinsky , sensor and Dynamic models runs. As
expected, a CPU time overhead is observed when SGS models are used compared to the no-model
computation. What is remarkable is that the sensor computation CPU overhead is extremely close to
the one observed for the baseline Smagorinsky. This shows that the computation of the sensor function
is inexpensive, which was expected as the only costly step is the test filtering of the enstrophy. The
Dynamic model is found to be much more CPU intensive, leading to a computational time overhead
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Model CPU Time Computational overhead

No subgrid model tref -
Smagorinsky 1.134tref +13.4%

Smagorinsky + sensor 1.151tref +15.1%
Dynamic model 1.404tref +40.4%

Table 2. Computational time for the various modeling approaches considered for the Taylor-Green
vortex computations using a 723 grid.

of 40 percent compared to the no-model computation. This excessive cost is due to need of test fil-
tering each occurence of the tensor Mij and averaging globally the numerator and denominator of the
dynamic coefficient expression.

D. Influence of the subgrid model

In the present section, the ability of the CvP methodology to enhance the performance of various
subgrid models is assessed. The Smagorinsky model, Structure Function and Vreman (all described
in section III.B) models are considered. Fig. 5 presents the evolution of mean enstrophy and subgrid
dissipation for the baseline and sensor computations. The baseline Smagorinsky and Structure func-
tion models lead to similar results, which is expected for freely decaying turbulence. Both models
introduce a strong subgrid dissipation which lead to an erroneous prediction of dissipation at the early
stages of the computations, emphasizing their inaptitude to capture the transient features of the flow
(characterized by a model subgrid dissipation active during the transition). The Vreman model leads
to a slightly more accurate prediction of the evolution of the dissipation rate. It appears that for all
models considered, the CvP sensor yields a clear improvement in the prediction of the dissipation rate.
In particular, Figure 6 shows the evolution of the sensor function values and the improved models
are found to successfully reduce the subgrid dissipation at the early stages, leading to a much more
accurate prediction of the transition to fully developed turbulence.
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Figure 5. Mean kinetic energy (left) and dissipation (right) for CvP (solid lines) and non-CvP (dashed
lines) LES computations of the Taylor-Green vortex at Re = 5000.
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Figure 6. Temporal evolution of the subgrid dissipation (left) and dynamic parameter (right) defined as
the factor of the classical Smagorinsky eddy viscosity (〈f〉 for the sensor and CD/(CS∆)2 for the Dynamic
model) for the LES of the Taylor-Green vortex flow.
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Figure 7. Helical vortex setup (left), radial velocity profile for the Biot-Savart law with modified Kernel
function to account for the viscous core (right).

V. LES of Double helical vortex breakdown

A. Problem definition

In this section, a fundamental test case is defined for the study of helices that are representative of
vortices generated in the wake of rotating devices. A vortex filament is initialized in a periodic, cubic
box. The filament equation reads:

X(θ) = [`θ,R cos(θ), R sin(θ)] (28)

where R is the radius and h is the pitch of the helix. The velocity field induced by the vortex filament
is determined by the Biot-Savart law.

u(x) = − Γ

4π

ˆ
Kv

(x−X(θ))× t(θ)

|x−X(θ)|3
dθ (29)
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where t(θ) = (−R sin θ,R cos θ, `) is the tangent vector to the helical filament, Γ is the circulation and
Kv is a function allowing to define the shape of the vortex core38 and reads:

Kv =
|x−X(θ)|3

(
|x−X(θ)|2n + r2n

c

) 3
2n

(30)

where σ is the core radius. The case n = ∞ corresponds to a Rankine vortex. The value of n = 4
is adopted to achieve a smooth transition between the inner, rotational flow and the outer, potential
flow. The corresponding plots of transverse velocity v as a function of the radius are shown in Figure 7
for different values of n and for the case Kv = 1 which corresponds to the Biot-Savart law without
correction, leading to infinite velocity at the core of the vortex.

B. Validation against experiments

In this section, the experimental conditions of the double helical vortex studied by Nemes et al.39 are
tentatively reproduced using the presently developed numerical framework. The radius of the helix is
R = 0.115, as in the experiment. The ratio of the helical pitch to helix radius is set to h/R = 1.1
which guarantees an unstable configuration due to the mutual inductance phenomenon. The ratio of
the vortex core radius to helix radius is set to rc/R = 0.06 to match the experimental conditions.
Finally, the circulation is defined by the means of the Reynolds number based on the circulation
ReΓ = Γ/ν = 7000. The direct numerical simulation of this flow being intractable due to the Reynolds
considered, a LES is performed using the sensor approach coupled to the Smagorinsky model using
a 1283 grid and a cubic box of dimensions 0.53. This leads to the definition of about 3 grid points
inside the vortex cores. First, the capacity of the sensor function to identify the large scale motion of
the flow is assessed by plotting vorticity iso-surfaces colored by the sensor function. Figure 8 presents
the iso-surfaces at four different times. At the beginning of the computation, only large scale features
dominated the flow. The onset of small-scales due to the instability caused by mutual inductance is
visible at the time t = 6. For the early stages of the computation, the iso-surfaces are mainly colored in
black, meaning that the sensor function is mostly inactive. When the flow transitions and small-scales
develop, high-vales of the sensor function characterized by white regions start to appear. What is
remarkable is the ability of the sensor function to separate the small-scales, mainly colored in white,
from the coherent motion characterized by a black color. This feature is also visible at t = 8, when
the large scales begin to vanish and the small-scale motion becomes prominent. It is also observed
that although the coherent vortices are mainly colored in black, they show white spots that are related
with an activation of the subgrid dissipation on these vortices. This is possibly due to the sharp
variations of the sensor function, and future work could adress this problem, by for example filtering
or smoothing the function. Furthers vizualisations in Figures 9,10 show the iso-surface of vorticity
clipped, corresponding respectively to low and high values of the sensor function. These plots confirm
that the sensor function is successful at identifying correctly the coherent motion of the flow. First,
the tracking of coherent motion through time is well identified by low values of f as seen on the left
column of Figures 9,10. Then, it is also particularly seen from the right column plots of Figures 9,10
that high-values of f monitor the progressive onset of small-scales as time evolves and as coherent
vortices breakdown to fully developed turbulence.
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Figure 8. Iso-surfaces of vorticity colored by the sensor function at different times for the LES of the
double helix configuration. From top to bottom and left to right: t = 2, 4, 6, 8, 10, 12.
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Figure 9. Iso-surfaces of vorticity colored by the sensor function at three different times t = 2, 4, 6 (resp.
first, second and third rows) for the LES of the double helix configuration. Left column: iso-surfaces
corresponding to values of sensor function between 0 and 0.3. Right column: iso-surfaces corresponding
to values between 0.3 and 1.
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Figure 10. Iso-surfaces of vorticity colored by the sensor function at three different times t = 2, 4, 6 (resp.
first, second and third rows) for the LES of the double helix configuration. Left column: iso-surfaces
corresponding to values of sensor function between 0.3 and 1. Right column: iso-surfaces corresponding
to values between 0.3 and 1.
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VI. Conclusion

In this paper, a novel SGS modeling concept based on a turbulence sensor has been developed. The
turbulence sensor is built from the ratio of test and grid filtered enstrophy in order to determine the
onset of transition or broadband turbulence locally in the flow. A damping function depending on the
sensor is then defined and allows for a reduction of the modeled subgrid dissipation in such regions.

The present methodology has been assessed from LES computations of the Taylor-Green vortex
flow at Re = 5000. It is found that the damping function successfully reduces the SGS dissipation at
the early, transitional stages of the flow and progressively leads to a full activation of the subgrid model
when turbulence is building up. The corresponding evolution of kinetic energy and dissipation is very
well predicted and matches closely filtered DNS results, especially considering the coarse discretization
of the LES study. The damping function has been coupled to several dissipative LES models and is
found to improve all of them, underlying the flexibility of the method which can be used in conjunction
with any existing SGS model. It must be emphasized that this approach is relatively simple, inexpensive
and only the implementation of a test filter is required.

Finally, the model has been assessed for a newly developed numerical test case allowing for the
fundamental study of rotor wake vortices. A coarse LES of this configuration with a pitch to vortex
radius ratio h/R = 1.1, which is unstable due to the mutual inductance phenomenon, has been
performed using the CvP model. Vizualisations of iso-surface of vorticity colored by the sensor function
values have shown that the turbulence sensor is able to sort the coherent motion from the small-scale
turbulence. However, locally high-values of the sensor function have been observed in the contour of
coherent vortices. An improvement of the sensor behavior could be therefore obtained by smoothing
the function which is a current topic of investigation.

Future work will aim at assessing the behavior of the present approach for wall-bounded turbulence
and more complicated flow configurations, as well as its implementation in more practical flow solvers.
Current work is also focused on determining accurately and locally the coherent scale using a variant
of the CvP methodology.
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