Securing Ad-Hoc Networks
Lidong Zhou and Zygmunt J. Haas

Denial of Service in Sensor Networks
Anthony D. Wood and John A. Stankovic

Presented by
Nipoon Malhotra

Why security in sensor networks

- Military applications
 - Hostile environments
 - Adversary may gain physical access to nodes
- Disaster management/relief and rescue
 - Protect casualties in terrorist attack
- Public safety
 - False alarms
 - Disabling sensors before attack
- Home and Heathcare
 - Privacy

Goals of Security Policy

- Availability
- Confidentiality
- Integrity
- Authentication
- Nonrepudiation

Challenges

- Wireless links
 - Jamming
 - Eavesdropping
- Hostile environments
 - Nodes can be compromised
- Dynamic networks
 - Topology
 - Size
 - Trust relationships
- Scalability
DOS Attacks

“A Denial of Service attack is any event that diminishes or eliminates a network’s capability to perform its expected function.”

Attacks can be by an intelligent, determined and resourceful adversary
– Fault tolerance based on independent and sparse error model may not be adequate

<table>
<thead>
<tr>
<th>Network layer</th>
<th>Attacks</th>
<th>Defenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Jamming</td>
<td>Spread-spectrum, priority messages, lower duty cycle, region mapping, mode change</td>
</tr>
<tr>
<td>Link</td>
<td>Collision</td>
<td>Error-correcting codes</td>
</tr>
<tr>
<td></td>
<td>Link-layer</td>
<td>Rate limitation</td>
</tr>
<tr>
<td></td>
<td>Link-layer</td>
<td>Link misuse</td>
</tr>
<tr>
<td>Network and routing</td>
<td>Network-layer</td>
<td>Redundancy, probing</td>
</tr>
<tr>
<td></td>
<td>Routing</td>
<td>Encryption</td>
</tr>
<tr>
<td></td>
<td>Routing</td>
<td>Misdirection</td>
</tr>
<tr>
<td>Transport</td>
<td>Flooding</td>
<td>Authentication</td>
</tr>
<tr>
<td></td>
<td>Denial of service</td>
<td>Authentication</td>
</tr>
</tbody>
</table>
Physical layer

• Tampering
 – Tamper-proofing
 – Camouflaging
 – Self destruct if removed from intended environment

Link Layer

• Collision
 – Attacker requires less energy than jamming
 – Can block access to medium

• Defense
 – ECC
 – Collision detection

Link Layer

• Exhaustion
 – Repeated collisions and retransmissions
 – Interrogation attack
 • Repeatedly seek resources forcing nodes to talk

• Defense
 – Rate limiting admission control
 – Limit responses that require radio transmissions

• Unfairness
 – Use smaller frames
 – Cheating ??

Network and Routing Layer

• Neglect and Greed
 – Drop packets
 – Give undue priority to one’s own packets

• Defense
 – Multiple routing paths
 – Redundant messages

• Homing
 – Encryption

• Misdirection
 – Divert traffic towards a victim

• Black Holes
Defense

- Authorization
 - Only authorized nodes exchange routing information
 - Scalability: every node is a potential router
 - Centralized certification authority is a single point of failure
 - What if it is subverted
- Monitoring
- Probing
- Redundancy

Transport layer

- Flooding
 - Client puzzles
 - Connectionless protocols
- Desynchronization
 - Forge sequence numbers and control flags

Protocols analyzed

- Adaptive rate Control
 - Gives preference to route-through traffic over originating traffic
- RAP
 - Velocity monotonic scheduling
 - Global clock

Securing Ad Hoc Networks

Zhou and Haas
Secure Routing

- DOS attacks
- Detection of compromised nodes is difficult
 - Topology changes
- Redundancy
 - Outdated information
- Diversity coding

Cryptography to the rescue

- Only authorized nodes allowed to exchange routing information
- Certification authority binds public keys to nodes
- These must be refreshed periodically
 - Node may loose certification
 - Key may be cracked
- In an asynchronous network trust can be distributed

What is Certification

- CA issues certificates signed by its Private key
 - certificate=(identity, E_p(identity))
 - Routers verify certificate using CA’s Public Key
 - identity=D_p(E_p(identity))

- Identity = Router ID + Router’s Public Key
- n servers
 - Store Public keys of all nodes including other servers

Threshold cryptography

- (n,t+1) threshold cryptography scheme.
- Divide private key into n shares such that at least t+1 shares are required to reconstruct it.
- Mobile adversary
 - Share refreshing
 - If K_1: (s_1^1,s_2^1,...,s_n^1) and K_2: (s_1^2,s_2^2,...,s_n^2)
 then K_1 + K_2: (s_1^1+s_1^2,s_2^1+s_2^2,...,s_n^1+s_n^2)
- So s_j=s_j + s_i s_j
LaGrange Polynomial

- \((n,m)\) scheme
- \(m-1\) dimensional polynomial with \(a_0 = \text{Message}\)
 - \(F(x) = a_{m-2}x^{m-1} + \ldots + a_0 : a_i < p\)
- Shadows
 - \(F(x) \mod p\)
- If \(s\) is largest possible message
 - Choose \(p > n\) and \((s-1)(m-1)/e + m\)
 - \(e\) is probability of successful cheating

Summary

- Studied the kinds of attacks on Sensor networks
 - Necessary to factor security in original design
- Studied an implementation of threshold cryptography for authentication
 - Effective technique
 - Overhead may not be tolerable in sensor networks
 - Works only for asynchronous networks

Threshold algorithms

- Message defined as a point in \(m\) dimensional space and shadows are equations on \(m-1\) dimensional hyperplane passing through the point.
- Karnin-Greene-Hellman
 - \(V_0 \ldots V_n\) : \(m\)-D vectors, rank\((V_i^T V_j) = m\)
 - \(U\) : \(m\)-D row vector
 - Message = \(U V_0\)
 - Shadows \(U V_i, 0 < i < n+1\)
Spread Spectrum Communication

- Communicator Power = S
- Jammer Power = J
- Data rate = Rb, Bandwidth used = W
- q = W/Rb
- Jammer spreads signal over fraction \(\frac{q}{W} \) of whole bandwidth
- \(P_e = \max_{0 \leq \phi \leq \frac{W}{Rb}} \left(\phi / 2 \exp(-S \phi / 2J) \right) \)

Public Key Cryptography

- C = \(E_k(P) \) encrypt message using private key.
- P = \(D_k(C) \) decrypt using public key.
- E.g RSA
 - Public key
 - n = pq where both p and q are primes.
 - e is relatively prime to \((p-1)(q-1) \).
 - Private key
 - \(d = e^{-1} \mod ((p-1)(q-1)) \)
 - Encryption: \(c = m^e \mod n \)
 - Decryption: \(m = c^d \mod n \)