I. THE MODEL

The simple depletion region approximation is based on a complete neglect of the influence of mobile carriers within the 'depletion layer' [1]. This neglect of mobile carriers gives rise to significant errors in the calculation of electric field; depletion layer thicknesses and associated capacitances and charging constants. The electric field and potential distributions within the depletion layer are significantly affected by mobile carriers, particularly at low and high forward biases.

Depletion layer approximation is typically applied to the calculation of depletion layer thicknesses in reverse bias situations. However, the same expression can be used to calculate approximately the depletion layer thicknesses for small forward voltages. This approximation becomes worse because the presence of large mobile carrier populations within the depletion region is no longer negligible. To show the effect of these mobile carriers, we consider an abrupt PN junction. A generalization of the following analysis of a more general doping profile PN junction, however, is beyond the scope of this paper.

At low forward biases, majority carriers within the depletion region reduce the net charge density. As a result, depletion layer thickness is larger than that predicted by the conventional depletion region model. For high forward biases, however, an injection of minority carriers into the depletion region increases the net charge density and consequently, depletion layer thickness becomes smaller than the value predicted by conventional model. This effect becomes important when the inverse Early effect in narrow-base bipolar transistors is to be considered.

For an abrupt junction, Frederickson and Rabkin [2] showed that the mobile carrier distribution within the depletion layer can be described by a mathematical expression which assumes that the carriers drift across the depletion layer at their saturated velocities. Recently, Suzuki and Nakayama [3] showed that this assumption of carriers transiting the depletion layer at their saturated velocity is a good approximation for calculating transit times. Neglecting nonthermal and thermal generation of carriers, the free electron distribution is described by an analytical expression which assumes that the carriers

Abstract—A useful analytical approximation for depletion layer thickness, which takes into account the effect of mobile carriers under high forward bias is presented. The new expression predicts, in agreement with computer simulations, a significantly smaller depletion layer thickness at high forward bias than that of conventional theory. The results of these effects for heterojunctions shows a less pronounced effect. The model's validity for different forward biases is also illustrated. Finally, the effect of temperature dependence is discussed.
inside the ionized P-type 'depletion' region can be written as follows [2]:

\[n_p(x) = n_{eq}e^{-ax(2x_p-x)} + \frac{D_n p_{eq}}{v_{th} L_n} \left(e^{V_{be}/V_i} - 1 \right) \]

(1)

where \(n_{eq} = N_D e^{-b}\sqrt{A} \)

and \(x_p \) and \(x_n \) are distances of the depletion layer boundaries from the metallurgical junction (\(x=0 \), \(n_{eq} \) is the thermal equilibrium minority carrier distribution, \(L_n \) is the electron diffusion length, \(V_{be} \) is the applied bias on the junction and \(v_{th} \) is the absolute magnitude of the electron saturation velocity. The factors \(a \) and \(b \) are defined as:

\[a = \frac{q^2 N_A}{2ekT} \quad \text{and} \quad b = \frac{q^2 N_D}{2ekT}. \]

(2)

A similar equation can be written for the holes inside the ionized N region.

Taking into account only the minority carriers, one can replace the net charge in Poisson's equation with the total of ionized charge density and minority carrier concentration since both have the same polarity. The reason for considering only the minority carriers will be discussed below. Assuming \(e^{V_{be}/V_i} \gg 1 \) for forward biases in (1), one can solve Poisson's equation to derive an expression for electric field as in (3) (see (3) at the bottom of the page).

\[\text{erf}(jx) \] is the error-function of imaginary variable \(jx \) and may be expanded to its Taylor series by:

\[\text{erf}(jx) = \frac{2}{\sqrt{\pi}} \left(x + \frac{x^3}{3 \times 1!} + \frac{x^5}{5 \times 2!} + \frac{x^7}{7 \times 3!} + \ldots \right). \]

(4)

For high forward biases, one can take the first term and ignore the higher order terms. This approximation cannot be done for low forward biases since the term \(\sqrt{a x_p} \) depends upon applied bias and increases as the applied voltage decreases. The reason for considering only minority carriers is now obvious; the minority carriers are too small at low forward biases to introduce any error to error-function approximation. At high applied biases, however, minority carriers cannot be neglected and the approximation is more accurate. By approximating error function to its first Taylor term, one can find a linear approximation model for electric field:

\[E(x) = \frac{q}{\epsilon} \left[N_A + \frac{D_n p_{eq}}{v_{th} L_n} e^{V_{be}/V_i} + n_{eq} e^{-ax} \right] (x_p - x) \]

(5)

for \(0 < x < x_p \).

By integrating the electric field, one can find the potential function. Assuming an N+P abrupt junction for simplicity and thus neglecting \(V_{th} \), which is the voltage across the N+ region, one can find the depletion region width inside the P region as:

\[x_p^2 = \frac{2(e(V_{be} - V_{th}))}{q \left(N_A + N_D e^{V_{be}/V_i} + \frac{D_n p_{eq} e^{V_{be}/V_i}}{v_{th} L_n} \right)} \]

(6)

This may be compared with the conventional depletion approximation model:

\[x_p^2 = \frac{2(e(V_{be} - V_{th}))}{q N_A} \]

(7)

where \(V_{th} \) is the built-in potential.

Fig. 1 depicts the depletion layer width of an N+P abrupt junction as a function of applied voltage \(V_{be} \). The effect of minority carriers at high forward bias serves to decrease the depletion layer width to less than what is predicted by the conventional model. The difference becomes larger as the ratio between \(N^+ \) and \(P \) region dopant concentration increases. Also shown in the figure is the result of the MEDICI simulation for the same device. The depletion region boundary is taken to be the point where the electric field becomes 1000 \(V/cm \) for numerical expediency.

At high forward biases, our model matches the simulation results with enough accuracy while the conventional model overestimates the depletion layer width. Different electric field profiles inside the P region of the same N+P abrupt junction for \(V_{be} = 0.8 \) \(V \) are depicted in Fig. 2. As can be seen from the figure, the conventional model predicts an electric field with a substantially lower magnitude as well as an overestimated depletion layer thickness, while the exact electric field model (3) and the linear approximation model (5) show a close match.

At low forward biases, however, both the conventional model (7) and our model (6) underestimate the depletion layer width as both models ignore majority carriers within the depletion region. Fig. 3 shows such an electric field profile (\(V_{be} = 0.4 \) \(V \)) for the exact electric field model (3) and the conventional model as well as the linear approximation model (5). Although the exact relation (3) shows an electric field with a higher magnitude at the vicinity of the junction, it matches the conventional model and the linear approximation model for larger distances from the junction. Therefore, the approximation is valid for low forward biases since the number of minority carriers at low forward biases is small. Note that, instead of integrating (3), to derive an accurate depletion layer thickness we use (6) as a substitute.

\[E(x) = \frac{q}{\epsilon} \left[N_A + \frac{D_n p_{eq} e^{V_{be}/V_i}}{v_{th} L_n} \right] (x_p - x) + q N_{eq} \left[\frac{\sqrt{2} e^{a x} \text{erf}(j(x/\sqrt{a}))}{2 \sqrt{a}} \right] \]

(3)

for \(0 < x < x_p \).
for x_p in (3). Otherwise, the actual junction depth would be smaller, considering only the minority carriers.

At medium forward biases, neither our model nor the conventional model is accurate. This is shown in Fig. 4 where the exact electric field (3) has a substantially different profile than both the conventional and linear approximation models ($V_{be} = 0.65$ V in this case). Since depletion layer thickness for exact electric profile is not known, we used our model (6) to estimate the thickness, however, this is not a good approximation and the actual thickness should be less than what is estimated by our model.

Our model seems to be a good approximation for high forward biases ($\sqrt{a(x_p)} \ll 2\sqrt{b}$) as well as being valid for low forward biases ($n_i e^{-\gamma x_p} \ll N_A + \frac{n_i}{v_m e^{\gamma V_{be}/V_t}}$) while it overestimates the depletion layer thickness for medium forward biases. The presence of majority carriers at medium forward biases compensates for the inaccuracy introduced by our model, therefore, the actual electric field profile derived from the MEDICI simulation is closer to our inaccurate linear approximation at medium forward biases.

Mobile carriers within the depletion region can be neglected for heterojunction devices. In such structures, the region with a larger bandgap is usually doped lower than regular cases while the region with a lower bandgap might be doped higher than a regular case. Thus, the second term in the denominator of (6) can be neglected unlike the first term since the relative difference between the doping of N and P regions is less. The third term in the denominator is also negligible compared to the first term because of the following reasons: for Si/SiGe heterojunctions, the built-in-potential decreases due to a reduction in the bandgap of SiGe material. Since the applied forward voltage is always less than the built-in-potential, it never becomes large enough to increase the third term in the denominator of (6). For GaAs/AlGaAs structures, the built-in-voltage and the
The subsequent applied voltage might be high. The number of intrinsic carriers, however, is small and thus the minority carrier equilibrium density n_{pe} is small which causes the third term in the denominator of (6) to become negligible.

The effect of temperature on the concentration of mobile carriers within the depletion region might also be of interest. For an N^+P junction, the effect of high temperature ($T=350$ Kelvin) on the depletion layer thickness on the P side is to accentuate the minority carrier injection into the depletion region of the lower doped P-side and consequently, a higher deviation of depletion thickness from conventional model (see Fig. 5). At low temperatures ($T=77$ Kelvin), however, the deviation from the conventional model is negligible (also see Fig. 5). Results of the MEDICI simulation are also shown in the figure for comparison. Again, the depletion layer boundary is taken to be the point where the electric field becomes 1000 V/cm.

REFERENCES