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Nonlinearity and Distortion 
 
   Let’s consider two examples 
 
 
Example 1 

 

but to send this out you need an infinite bandwidth

you have a QPSK transmitter

LPF modulator PABBX outX
(+) (+)

If you do not filter your QPSK this is what you have

°90°180°180

QPSK

filtered
QPSK

 you do not have infinite bandwidth

this is what you get

So you have to filter your signal such that it only

occupies one channel if you filter your QPSK with a LPF

because of limited bandwidth your phase information

turns into amplitude information  
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Now if your PA clamps the peak of your filtered QPSK

you loose your information  
 
 

distortion due
to damping
changes your
amplitude

you loose information now
you cannot correctly detect
your phase in your receiver 

 
 
 

QPSK is very sensitive to amp linearity

FSK or FM is not sensitive to amp linearity

since you do not have instant phase variation 
 
 

Choice of your modulation depends on

how linear your amplifier can be

QPSK needs very linear amplifier

FSK, FM not need linear amplifier

usually class A
not very efficient

you can use
class B, C, ,,,
amplifier with
much higher
efficiency  
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Example 2 
 
 

your receiver receives 3 signals

0f
∆+= 0

1

f
f

∆+= 20

2

f
f

2 adjacent channels are
strong interferers

your signal is
weak  

 

in your LNA you have nonlinearity so your strong

interferers mix with each other due to LNA nonlinearity 

 

This mixing generates frequencies such as

( ) ( ) 00021 222 fffff =∆+−∆+=−

This is what you get at the output of LNA  
 

your signal

IM3 (distortion of interferers)  

    

This distortion makes your reception difficult

we have to understand distortion and nonlinearity 
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Non-linearity

Weakly non-linear systems (such as in receivers)

Strongly non-linear systems (such as in high efficiency transmitter)

LNA

class B-E PA s’

also clamping

 

 

 

to deal with weakly non-linear system there are two

approaches
power series

volterra series

represent transfer function using a power series

power series with information about phase  

 
 

 

for strongly non linear system use envelope analysis

instead of frequency domain analysis

use time domain analysis  
 
 
* At midband frequency

parasitic caps and inductors

bias and bypass caps

can be neglected
in terms of the phase
they introduce

use
power series

 
 

* At   low   or   high   frequencies

you need to know the phase of the signal

that is subjected to non-linearily

use
volterra series
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linear

strong non-linearity
(cannot be modeled by power/volterra series)

since at this point higher

order terms become

dominant in saturating

the signal
inS

outS

 
 
 
 

     

* most often this is what you have

linear inS

outS

small non linearity

you can write this transfer function
in general by a power series

L+++= 3
3

2
21 inininout SaSaSaS  
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where a1, a2, a3, ,,,   are constants

* they usually vary with signal amplitude

* they vary with the choice of bias

* they vary with frequency

* they vary with input/output matching

 
 

let  s assume :  they are constant (ignore variation with signal amplitude)
(fixed bias, small frequency range, fixed matching)

’

 

 

now apply an input function ( )tfSin ω=

( ) ( ) ( ) L+++= tfatfatfaSout ωωω 3
3

2
21  

 
 

( ) ( )
( ) L+++

+++=
3

22113

2
2211222111

coscos

coscoscoscos

tmtma

tmtmatmtmaSout
ωω

ωωωω

( ) tmtmtflet 2211 coscos ωωω += 21 ~ ωω

use trigonometric
expansions
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Let’s look at the important coefficient 
 
       

1 ⇒toftcoefficien 1cosω

2 ( ) ⇒− 21cos ωωoftcoefficien

3 ⇒toftcoefficien 12cos ω

4 ( ) ⇒− toftcoefficien 212cos ωω

5 ⇒toftcoefficien 13cos ω

tmmmama 1
2
21

3
1311 cos

2
3

4
3 ω














 ++

( )tmma 21
21

2 cos
2

ωω −















t
m

a 1

2

2 2cos
2

1 ω












( )tmma 212
2
13 2cos

4
3 ωω −





tma 1
3
13 3cos

4
1 ω





 

                  
 
 
 
First non-linearity 
 
 

1

for only one tone : ( ) tmtf 11 cosωω =

Gain compression

tmama 1
3
1311 cos

4
3 ω






 +

linear gain gain compression / expansion  
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inS

outS gain expansion

gain compression

as signal becomes stronger

 

usually we observe gain comperssion that means a3 is usually negative 
 

2 IM2

good mixer( ) ( ) ( )tmatmmamma 21
2
1212

21
221

21
2 coscos

2
cos

2
ωωωωωω −=−+−

21 mm =

21 mmassume =

1
1

222 m
a
a

lfundamentaofamplitude
orderndofamplitudeIM ==

 

 

   

mixing comes from 2nd order (4th order inter modulation etc?  terms (IM2)

good news for MOSFETs since their input/output relationship
is  of 2nd order nature

2
gsd Vconsti =

3rd order term also exists in MOSFETs due to two mechanisms

non-linearly gain clamping  +  body effectstrong weakly non-linear effect  
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HD23  

 

tma 1

2
1

2 2cos
2

ω 2nd harmonic
 

 
 
 

Define :  2nd harmonic distortion factor  HD2

11

22
12sec2

ma

ma

amplitudelfundamenta
amplitudehamonicondHD ==

assuming gain
compression has
not occurred yet

1
1

2

2
12 m
a
aHD =

 
 
 
 
 

)(2 dBHD

)(mVSin
mV1 mV10 mV100

20−

40−

60−

decadedB20

range of interest

4th order contribution
to second order
kicks in

IM2 = 2HD2

2nd
intermod

2nd harm
distortion
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4 IM3 21 mmassume =

( ) ( )tmatma 12
3
1321

3
13 2cos

4
32cos

4
3 ωωωω −=−

212 ωω − 122 ωω −1ω 2ω

third order inter modulation
distortion (IM3)

fifth order -  etc.
they usually have
same amplitude
unless you have
AM-PM  

 

IM3 = third order inter modulation

lfundamentaofamplitude
erorderthirdofamplitudeIM modint3 =21 mm =

2

1

3

11

3
3

1

1

4
34

3

3 m
a
a

ma

ma
IM ==

 
 
 
 

 5 HD3       : t13cos ω  

2
1

1

3

11

3
13

4
14

1

3 m
a
a

ma

ma

amplitudelfundamenta
amplitudeorderthirdHD =

×
==

IM3 = 3HD3
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Effect of feedback on distortion 
 
 

inS + outSα

f

εS

fbS

non-linear
amplifier

assumption : feedback network is linear

use power series :  
 
 
 

L+++= 3
3

2
21 εεε SaSaSaSout

outin SfSS −=ε  
 
 

( ) ( ) ( ) L+−+−+−= 3
3

2
21 outinoutinoutinout SfSaSfSaSfSaS

3
3

2
21 inininout SbSbSbS ++=

substitute

we are looking for
b1, b2, b3  coefficients  

 
 

( )
( )33

3
2

213

23
3

2
212

3
31

2
21111

3
3

2
21

inininin

inininin

ininininininin

SbfSbfSbfSa

SbfSbfSbfSa

SbfaSbfaSbfaSaSbSbSb

−−−+

−−−+

−−−=++
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1st order terms ininin SbfaSaSb 1111 −=

fa
ab

1

1
1 1+
=

standard feedback equation for a linear system 

 
 

2nd order terms

( ) 22
12

2
21

2
2 1 ininin SbfaSbfaSb −+−=

( ) ( )
( )21

2
2

1212 1
111
fa

abfafab
+

=−=+ ( )31

2
2 1 fa
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+

=

 
 
 

3rd order terms

( ) ( ) 33
13

3
212

3
31

3
3 112 inininin SbfaSbfbfaSbfaSb −+−−−=
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( ) ( )31

2

1
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1
313 11
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1

11
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a
fa
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+

⋅
+

−
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=+

( )
( )51

2
13

3 1
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2
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fafaa

b
+

−+
=

 
 
 

Now let  s look at different distortion coefficients’   

1
1

2

2
2

2
12 m

a
a

IMHD ==no feedback
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with feedback ( )
( ) 13

12

11
1

1

2

12
1

2
2 m

faa
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b
bHD feedback ⋅

+
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2
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1

1

2
1

2
2

fa
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fam

a
aHD feedbackno

feedback
+

=+= − Dramatic reduction
of HD2 (IM2)
with feedback
when measured
based on same
input power (m1)

if HD2 is measured based
on output power amplitude

(since total gain is reduced by                  ,

therefore                                                    at the same output power)
fa

HD
HD feedbackno
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+
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you can make

by using right amount of feedback!

033 =feedbackfeedback IMorHD

with feedback
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Distortion in MOS transistors 
 
 

DI

gsV

gsQV
GSV

assume : ideal MOSFET

(no body effect)

body effect
introduces
third order
terms!  

 

( )2

2 ThGS
OX

D VV
L
WC

I −=
µ

gsgsQGS VVV +=

( ) ([ ]ThgsQgsgsThgsQ
OX

D VVVVVV )
L
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I −++−= 2
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22µ
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DQD VVV
L
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µµ 2

2

mg  
 
 

2

2 gs
OX

gsmDQD V
L
WCVgII µ

++=
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( )ThgsQ
OX

m VV
L
WC

ga −==
µ

1

L
WC

a OX

22
µ

=

03 =a

non-linear
coefficients

tVV gsgs ωcosˆ=
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−
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4

ˆ
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in terms of output signal ( )ThgsQ
OX

gsgsmD VV
L
WCVVgi −==

µˆˆˆ

DQ

D

I
iHD
ˆ

8
12 =

 

 
 

ideal MOSFET does not show

* gain compression

* IM3,  HD3    as long as it is in saturation! 
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MOS Differential Pair 
 
 

1DI 2DI

2M1M

SSIiV

21 DDout III −=

* Assumptions :

- M1 & M2 identical

- ignore body effect

- ideal MOS  
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L
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on the other hand ( )221 SSDD III =+  
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use power expansion ( ) L+++≈+
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example : ,403 dBHDfor −= what is the amplitude

of input signal ,   Assume VoltVV ThgsQ 1~−
 

01.0403 −=−= dBHD VoltVi 34.0ˆ =  

 

( )VVi

21 , dd II
1dI2dI

2
SSI

VVV ThGS 1=−

VVV ThGS 3.0=−

SSI

V5.0
 

 
 

 
 
MOSFET with RS 

 
 

OI

dDQO iII +=

bias
signal

 
 

+    feedback

fRg Sm =  
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* ignoring body effect 
 

L+++= 3
3

2
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SRSR

3HD

HD3 is zero
for ideal MOS

that gives worst HD3

03
=

∂
∂

SR
HD

m
S g
R

3
1

=

RS helps reducing HD2 but worsens HD3 !  

 
 
 
Intercept Point 
 
 

11 13

gain

IM3

OIP3
IP3

IIP3 inP

outP

* IP3 is typically
   10 ~ 15 dB higher than
   1 dB compression point

 
 
 
 

   -    - 166  


