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Oscillators and Synthesizers 
 
Oscillators 
 

active device with power gain
(amplifier, negative R)

frequency setting
tank element  

 
 
Why do we need oscillators   to provide a stable frequency output 

*  useful for timekeepers

*  useful for communications mixing with local
oscillator (LO)  

 
Important attributes of oscillators 

*  long term stability

temp. coefficient of oscillation frequency
aging and drift  

 
 
Types of active devices used for oscillators 

*  3-terminal : MOSFET, BJT

*  2-terminal : negative resistance diodes
                        (tunnel diode, Gunn, IMPATT,     )L  
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Types of tank element 

Q
Surface
Volume

=

*  Quarter-wave Resonators
Distributed elements with high

*  Lumped LC tank

*  Xtal

*  SAW (surface acoustic wave devices)  
 
 
Classification of oscillators 

*  near sinusoidal

low phase noise
(e.g. high Q  LC or Xtal Oscillators) 

*  Relaxation Oscillators

poor stability, but can have
a very large tunning range
(application  VCO)

(e.g. multivibrator, Ring Oscillator)

 
 
Approaches to Oscillator Design 

*  negative R 2-terminal active element oscillator

used at very high microwave frequencies

> 50 GHz  

*  feedback 3-terminal active device

We will look at the feedback approach when dealing
with MOS oscillators  
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*  Since it is a feedback system

1) find open loop gain with feedback loading ( )lA
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O
l ZG
V
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tank ckt impedance  
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Oscillator response (Transfer function)
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Therefore in the beginning the signal grows exponentially

until VO(t) is no longer a small-signal for the oscillator

in large-signal operation Gm starts to decrease  
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poles are now on imaginary access
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Once poles are on imaginary access the signal amplitude
does not grow any more

2mg

OV

mG

Rn

at this point

01 =−
n
RGm

amplitude at
steady-state

mG
start

LCs

sL
R
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21+

⋅
= signal reaches steady state

mG

 

current may be non-sinusoidal but very selective
turned circuit tunes out the fundamental component at 0ω

LC
1

0 =ω

OV
statesteady−

 

typically
mG
start

mG
statesteady−

3> to make sure

1. oscillation starts

2. enough amplitude
     for your near-sinusoidal

3
2

>
Rn

gm
R
ngm

6
>

a function of device size (W/L) and also
gate overdrive ( )Tgs VV −
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Problem with transformers:

*  cannot be integrated

*  low frequancy

*  low Q

use capacitive transformersolution  
 

LR

1C

2C 21

21

CC
CC
+ LRC

CC

1

21 +

Source-coupled pair oscillator (at higher-freq.)  
 

1C

2C

LC

DDV

L LR

BiasR

SSI
BiasR

BiasV Can change Gm to make sure
oscillator starts

1

12

C
CCn +

=

gsCCC += 22

varies with
bias point
and process

 

 

so we often design

2CCgs < such that oscillator

performance becomes independent
of transistor parameters  



ECE695F  RFIC 
Prof. S. Mohammadi 

   -    - 243  

Single active device oscillators 
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Another widely used oscillator :  
 
Colpitts oscillator 

R 3C
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you can use transmission line instead of inductor

(for higher Q and higher freq.)  
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=
λ
π lZjZ 2tan0

100~Q
can be
achieved
on Si

substrate

char. impedance

wave length

problem :
l is too long at
low freq.

Z

l

length of
trans. line
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Colpitts oscillator 
 
 

L1C

2C

very good phase noise

source-drain feedback
Also Tito
tuned in, tuned out

a lot of cases
this feedback
is provided by
transistor

not
very
popular

need 2 L s’Q  
 
 
 
 
 
Hartley Oscillator 
 
 

1L

2L

C disadvantage
needs two
inductors
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Pierce Oscillator 
 
 

often used
for Xtal Oscillator

 
 
 
 
 
 
 
Clapp Oscillator 

replace L with series LC

basically colpitts
with additional
capacitor tap

voltage across L can be higher than device breakdown voltage

better spectral purity  
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Quartz Crystals 

Quartz : single cystal 2SiO

It is a piezoelectric material :
displacement   d   generates a charge  q dqα  

 
 

Experiment 

Quartz crystal
Quartz growth
takes several months
Quartz cannot be
integrated with Si
Process

compress and let it go

d
d

t
 

q

t

tdt
dqi =

you can get the
same response
from RLC
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Equivalent ckt for a quartz crystal 
 

xCxL xR

motional
element

circuit
symbol subscript x shows

that they are motional

very high Q can
be achieved

There is also a parallel
intrinsic capacitance OC  

 
 

xCxL xR

OC

series LRC

ω

crystal
the actual
response
you get

due to motional effects
in practice there are many
mechanical mode and
they are not necessarily
harmonics of each other  
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Xtal resonance frequency 

Set by geometery and the speed of acoustic waves
in the material

v
tf 2,1

0 == τ
η

thickness of quartz blank

acoustic wave propagation
velocity sec103~ 3m×

t
for mmt 1=

sec67.0 µη =
MHzf 5.10 =  

Practical limitation MHz200~

since it gets too thin and fragile

*  for   f0 > 50 MHz    use overtones

*  for very low freq.    use tunning forks

like watches
16 kHz

 
 
How accurately must they be cut? 
 

Example :   watch application

1 sec /month  is acceptable 

ppm4.0
sec31246060

sec1
=

×××
Q accuracy

ppmneedMHzf 6.05.10 = accuracy in thickness 
 

mmtif 1= atomsAppmt 2~66.0
o

==∆  
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sequence of xtal fabrication process :

Polish them down to the      ~ right thickness1

Chemical etch2

3 Deposit gold to get a fixed mass

This affects the freq.  
 
 

Temperature coefficient of f0

t
vf
2

1
0 ==

η
both have TCF ~ 14 Cppm °

but not complete cancellation
in the end we get
certain cut angle

TCF/f0   ~  0.5 Cppm ° average

for AT cut crystal  

Slope 0 '0535°

'1035°

'1535°
'2035°

T

S

S

ω
ω∆

cut angle

oven controlled OSC : used for very accurate synthesizer

you wait 15 min to warm up  
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what controls the overall temp coeff. of  a high-Q oscillator

Q
Sωω =∆ give 90   phase shift°

 
 
 

3 dB
ω∆

Sω
90+

90−

45+

45−

000,50=Qif

shiftphasefor
shiftfreqppm

°90
.20

 

 
 

Suppose active device in osc. has                    phase shift°=∆ 25φ

over TC ∆°100  
 

C°°=∆ 25.0φQ Oscillator loop phase-shift has

This         in loop phase-shift must beφ∆

compensated by xtal phase shift  
 
 

CppmCppm
°=°°×

°
=∆ 06.025.0

90
20ω

shift in freq. due to variation

in the phase of the active device 
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Conclusion : Oscillator temperature stability is set by crystal, not the active device 

in micromechanical resonator

xCxL xR

OC

HLx 25.0=

PFCx 04.0=

Ω= 50xR

typical

xx
S CL

1
=ω

x

xx

R
LQ ω

=

!!10~ 5 HLx

 
 
Crystal Oscillator 

    

Pierce, Colpitts, Clapp ...

best configuration for xtal osc. 
Pierce xtal oscillator 

OV

DDV
Bias

1C 2C

pure
sine

buffer

linear MOS

resisto
r

want to be large
typical values
you get
limited by geometery
of the transistor

ΩkR 200~

iV distorted waveform

i

you can ratio       and       to
get               with the same amplitude

1C 2C

Oi VV ,

can get higher R if operates
in weak inversion (subthreshold)

 

you can get substitute crystal  with effL  
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Closer look at crystal 
 
 

xC

xL
OC cjx

CX

inductive

series

Sω Pω
res.

parallel
resonance

xxCL
1

capacitive
in crystals

PS ωω ~

effL

effC

 
 
 

Sbelow ω
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=
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ωω
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ω
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CCC 21 ω−
+=

xO CC +
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S CL

1
=ω
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between        andSω Pω

effc Ljjx ω=









−=

xx
x

O
eff CL

Lj
Cj

Lj 2

111
ω

ω
ω

ω
 

 

Sω Pω

effL

series resonance
parallel resonance

 

in crystals PS ωω ~  

For pierce oscillator the oscillator freq.  ~ Pω

in order to get 90   phase-shift

across the crystal

°

 
 

@  parallel resonance









−−=

xxP
xP

O CL
Lj

Cj 2

111
ω

ω
ω

 
 

O

x
SP C

C
+= 1ωω

 
 

typical values : pFCx 04.0=

pFCO 4=

SP ωω 005.1=
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MOS Xtal oscillator 
 
 
Colpitts 
 

 
 
 
Pierce 

 
 
 
Miller 

 


