
Random Access Memory

BL

You can read/write
at comparable speed

BL
WL

DDV

QQ

Six transistor CMOS RAM

Read Operation

active word line

BLBL , are precharged to DDV

eq ckt : (Q = 1)

BL BL
WL

DDV

0=Q
min

DDV2.1×W

Sense amp

+−

Size of pass transistor
has to be smaller
than M1 to avoid
read upset

if the lines are precharged
to better performance
can be achieved + no read upset

2DDV

1>
LWPass
LWNMOS

Detect the difference between the two lines

Write operation

BL BL* and are set to different values

* WL is activated

This works identical to SR latch

Cover powering the latch
8.1>

LWPass
LWPMOS

2
min

×PMOS
sizeimum

Make it minimum

Write time dominated by
 tp of cross-coupled inverters

Resistive SRAM

 Replace PMOS with resistive loads

* 4 trans instead of 6

* much smaller area since inter connection
 routing is easier + no need for n-well areaof3

2

* higher power consumption (in stand by)

Resistors do not introduced slower cell as the precharge is done extrenally
so make R as big as possible limt area

undoped poly as resistor ⎟
⎠
⎞⎜

⎝
⎛ ΩT

should provide current at least 2 ordered magnitude its cell takencell
A1510 −

Dynamic RAM

Resistor SRAM resistor function is to provide current to compensate for leakage

 we can omit the resistors and refresh the memory periodically dynamic RAM

refreshing read the data then

write the same data

1 - 4 msec refreshing period

deleting the resistors will result in

BL You do not need to
store both and
so you can further simplify
it to 3 transistor version

BL

WL

QQ ⇒
Q Q

)(1 writeBL

)(writeWWL

3 transistor version

)(2 readBL

sC

)(readRWL
to write

* Put data on BL1

* activate WWL

 data will be store in the capacitor (Cs)

charge 1

no charge in Cs 0

to read

* Precharge BL2 to VDD or (VDD - VT)

* activate RWL

if BL2 goes down (0) you had stored 1

if BL2 stays at VDD you had stored 0
 you need to

 invert the data
 (inverting sense amplifier)

Cell size 1/2 of SRAM

* you can further reduce the size of the cell
 for instance BL1 and BL2 can be merged into one line

* WWL and RWL can also be combined and
 you can read data just like when you refresh data

3-transistor cell dynamic RAM

1. unlike SRAM no constraint on device ratios

2. reading 3-t SRAM is non-destructive

4. the voltage stored at X (Cs) is VWWL - TTh

3. standard CMOS technology suitable for embedded memory

Therefore during read time you have loss voltage

less current higher tp

to avoid this situation you can bootstrap
VWWL to higher than VDD

1-transistor dynamic memory

BL

sC

WL

⇒ not a gate capacitor ~ 30fF

So you need a technology that
gives you a reliable compact capacitancce

Write cycle

* activate WL

* put data on BL

data will be stored (0 or 1) on the capacitor

TDDs

s

VVC
VC
−=→

=→
1

00
You always use bootstrapping of WL

Read Cycle

* precharge bit line to VPRE (0< VPRE <VDD)

* activate WL

* VBL starts to change by

() mV
CC

CVVV
BLs

s
PREBit 250~

+
⋅−=∆

needs amplification

%10%1~arg toratiotransferech
CC

C
BLs

s =
+

Direction of charge determines the data (0 or 1)

Adder

Consider transmission gate adder

P

P

A

BB

A

A

BAP ⊕=

P

P
DDV

S

iC

iC

P

DDV

oC

iC

A

Piio ACBCABC ++=

()ioi CBACABCCS +++= iCBAS ⊕⊕=

Problem is the delay propagation in carry generation

that slows down the odd process () sumcarryadder ttNt +−≈ 1

Consider the following signals

ABG =

BAD =

BAP ⊕=

generate carry

delete carry

propagate carry Co and S

We can rewrite

io PCGC +=

iCPS ⊕=

Truth table for adder

generate
delete propagate

A B Ci G D P S Co Carry State

0 0 0 0 1 1 0 0 Delete

0 0 1 0 1 1 1 0 Delete

0 1 0 0 0 0 1 0 Propagate

0 1 1 0 0 0 0 1 Propagate

1 0 0 0 0 0 1 0 Propagate

1 0 1 0 0 0 0 1 Propagate

1 1 0 1 0 1 0 1 Generate

1 1 1 1 0 1 1 1 Generate

So to make Co what you can do is to

iP

iC

DDV

oC
iG

iP
iD

delete

propagate

has much shorter delay

reduces the delay of the ripple carry adder

manchester carry
 (static)

..Manchester Carry generation (dynamic)

iP

DDV

iC oC
0

iG

0

need only one pass transistor
instead of transmission gate

no need to delete
since you precharge
the carry to VDD

Carry Chain Adder

oP

DDV

0iC

0

oG

0

1P
0

1G

0

2P
0

2G

0

3P
0

3G

0

oC 1C 2C 3C

* G and P only depend on A and B so the delay in carry generation is
 only due to this ckt which is much faster than ripple carry adder

Advantages

* much faster carry generation path

* much easier/smaller layout

() RCNNt p 2
169.0 +

=

R: pass transistor resistance
C: node capacitance (4 diffusion cap + 1 inverter cap)

() sumcarryp ttNt
withcampare

+−= 1

distributed nature results in quadratic increase of delay

with N if N = 128 (for supercomputers)

 64 (for servers)

 32 (for PCs)

delay becomes extremely

large so every 3~4 bit do buffering

that would make delay linear function of

N but adds up the buffer delay

Dynamic implementation of propagate and generate signals

DDV

clk

ia

ib
ia

ib

DDV

?iii bap ⊕=

DDV

ia

ib

DDV

iii baG =

clk

clk

clk

Multiplier

1st task to generate
partial products

1 0 1 0 1 0
 1 0 1 1

1 0 1 0 1 0
1 0 1 0 1 0

0 0 0 0 0 0
1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

multiplicant
multiplier

partial
products

result

Partial-product generation

7X 6X 5X 4X 3X 2X 1X 0X

7pp 1pp 0pp

iy

Then you have to sum the pp terms

you can use an array to do so

Array Multiplier (4x4)

* shifting is done by routing the signal

* pp generation is done by using AND gates

ZYX =×

2X 1X 0X

0y
3X

2X 1X 0X

1y
3X

FA FA FA HA

2X 1X 0X
2y3X

FA FA FA HA

2X 1X 0X
3y3X

FA FA FA HA

6Z 5Z 4Z7Z 2Z 1Z 0Z3Z

Delay Depends on the critical path what data are you multiplying

() ()[] () endsumcarrymult ttNtNMt +++−+−≈ 121

MXXM →→ 0

MyyN →→ 0

	Random Access Memory
	Read Operation
	Resistive SRAM
	Cell size 1/2 of SRAM
	Write cycle
	Read Cycle
	Adder
	Multiplier
	Partial-product generation

