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For tap ωωω <<<<  we can write: 
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When you put the opamp in a feedback loop: 
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Gain at low frequency = 
β
1   -3dB: tadB βωω =−3 . 



 114

 

 

 

 

 

←=× taBWGain ω  always constant  (gain bandwidth product) 

 

 

 

Linear settling time 

 

 

Setting time: time it takes for an OPAMP to reach a specified percentage of its final value 

when step input is applied. 

 

 

   Linear Æ due to finite taω  of OPAMP (in small signal) 

Settling time 

   Non-linear Æ due to slew-rate of OPAMP under large signal input 

taω

pω

β
1

Without feedback 

tadB βωω =−3

So both gain and BW 
change with feedback 

 

 

Æ  for small step sizes in the output signal, OPAMP may not reach a slew-rate limit at 

all. 
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The time constant of OPAMP response in closed-loop system:  

 

tadB βωω
τ 11

3

==
−

 

 

Since we are assuming a first-order system, transient response is: 

input 

⎟
⎠
⎞⎜

⎝
⎛ −=

− τ
t

stepout eVtV 1)(

 

 

Time it takes for signal to reach its 99% final value is: 

 

ta
settling

t
te

βω
ττ 6.46.401.0 ==→=

−  

 

For 90% is: 

 

ta
settling

t
te

βω
ττ 3.23.21.0 ==→=

−  

 

Slope of the output: 

 

τ
step

t

out V
dt

dV
=

=0

 

 

Æ  If slew-rate is larger than this value, there is no slew-rate limiting mechanism. 
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OPAMP compensation 

 

In order to analyze OPAMP stability under feedback, we have to consider OPAMP as a 

2-pole system. 

←
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)(  open-loop OPAMP transfer function 

 2nd pole that takes into account 
all of OPAMPs poles and zeros. 
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Assuming that the second pole of T.F. ( eqω ) is very high 
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When unity gain freq. is smaller than dominant pole without comp. Æ dBta 3−= ωβω  



 117

Gain margin / Phase margin concept 

 

PM/GM are measures of stability. 

tω
Gain

Gain margin 
1

180−

0

90−

Phase

Phase 
margin 

  

 

PM/GM are measured on the loop gain of an open loop system. The idea is if you have 

gain in a system that has an overall phase of less than -180˚, by applying feedback the 

system can become unstable. 
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For a given PM unity gain frequency ( tω ) is independent of the amount of feedback (β ). 
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Example: A closed loop amplifier is compensated to have PM = 75˚. 
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If MHzftatta 9.1303.11 =→=→= ωωβ   

 

We can calculate closed loop gain using second-order model for TF of OPAMP Æ 
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eqtaeqta ωβωωωβωω =→= 0
2
0       Æ  resonance frequency in a a2-pole system. 

 

eq

ta

eqta

tataQ
ω
βω

ωβω
βω

ω
βω

===
0

          Æ   Q-factor in a 2-pole system 

 

Q determines how much overshoot you have in time domain. 

 

Response:  14 2

.100% −

−

= Qeovershoot
π

 

 

→≤ 5.0Q   no overshoot 

→=≤ 707.0
2
1Q   widest BW for magnitude of the response. 

 

One can relate Q  (and thus overshoot) to PM. 

 

Remember that ( )PM
eq

t −°= 90tan
ω
ω

. 

  

PM 
eq

t

ω
ω

 eq

taQ
ω
βω

=  

Assuming 1=β  

% overshoot 

55˚ 0.7 0.925 13.3% 

60˚ 0.58 0.817 8.7% 

65˚ 0.47 0.717 4.7% 

70˚ 0.36 0.622 1.4% 

75˚ 0.27 0.527 0.008% 
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If OPAMP is stable for →= 1β  it is stable for all sort of passive freq-independent 

feedback ( 10 ≤≤ β ). 

 

Problem is the OPAMP is overcompensated if 1=β  is not used Æ response is slower. 

 

Compensating our OPAMP 

 

 

cmpC Æ controls 
1pω Æ  

dominant pole of the 

OPAMP (at 1.8KHz) 
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16Q  is series connected to a capacitor Æ V VDS 0
16
=   Æ Q  is in triode region 16

 

   

 

 

  

 

The RC compensation seen here is called “lead  

compensation”. 
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Small-signal model 
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* You can calculate 
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out
V

V . Here we consider the effect of current through  cmpC CR . :

 

What you will find is: 

 

 
Zero in transfer function 
due to cmpC CR .  path 
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Poles of the transfer function due to 

cmpC  and transistor capacitors 
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You can choose zω  for optimum

 

* If Ω= 0CR  Æ 
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Let’s calculate ⎜
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If you separate the two poles Æ 

 

You get better stability. 

 

 

 

  second pole, which is typically much higher in 

frequency proportional to the transconductance

of the 2nd stage. 
t half-plane zero can cause instability 

 performance. 
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more like one pole system 
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Æ to separate the two poles you want both and  to be large. 
7mg cmpC

 

 

    →↑cmpC
1pω  decreases but 

2pω  is not changes Æ OPAMP slower, but stable. 

   

     and   →↑
7mg ↓

1pω ↑
2pω

 

 

Problem is with the zero that has a negative phase shift (phase lag), current in  is in 

the opposite phase with current that can cause instability. 

cmpC

77 gsm Vg

 

To remove the phase lag you would like to reduce zω  Æ make large Æ not good 

because OPAMP becomes very slow. 

cmpC

 

7mg  smaller Æ not good since the two poles become closer. 

 

That’s why we often use  (transistor ) to move CR 16Q zω  to smaller values without 

changing 
1pω , 

2pω . 

 
 
 



 124

 
* If 

7

1
m

C gR =   

 

Æ You can eliminate the zero of the TF all together. 

 

* If CR  is even higher 

 

Æ You can move the zero from right half-plane to left half-plane (phase lead instead of 

phase lag) and ideally if: 

 

2pz ωω =  

 

Then you can cancel the non-dominant pole of the TF Æ one pole system Æ always 

stable. 
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* Even higher CR  
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Æ This would give optimum lead compensation. 
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R 1
∝  is an interesting concept from the following point of view. Let’s look at the 

OPAMP high frequency performance: 
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So high frequency performance of the OPAMP is proportional to  and . As the 

temperature or process varies,  and vary at the same rate, so 

1mg
7mg

1mg
7mg taω , 

2pω and zω  all 

vary at the same rate. But relative to each other they stay constant so OPAMP stays stable 

as temperature and process vary. 

 

 

To get this, you need 
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To be independent of process and temperature we need 
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7

tnGS

tnGS

VV
VV

−
−

to be independent of 

process and temperature. 

 

 

Let’s look at the circuit: 
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Let’s look at  and  and find the ratio: 13Q 7Q
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On the other hand: 
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Our analysis is not entirely correct, since  is not in ideal MOS saturation! 16Q

 

Since I’s are independent of Bias/µ ’s, etc. ’s are also independent of 

Bias/temperature/process. 
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