© 2012 IEEE. This paper appeared in the IEEE International Conference on Image Processing, 2012

A STRATEGY TO JOINTLY TEST IMAGE QUALITY ESTIMATORS SUBJECTIVELY

Amy R. Reibman
AT&T Labs — Research, Florham Park, NJ, USA

ABSTRACT

We present an automated algorithm to design subjective tests
that have a high likelihood of finding misclassification errors
in many image quality estimators (QEs). In our algorithm, a
collection of existing QEs collaboratively determine the best
pairs of images that will test the accuracy of each individual
QE. We demonstrate that the resulting subjective test provides
valuable information regarding the accuracy of the cooper-
ating QEs. The proposed strategy is particularly useful for
comparing efficacy of QEs across multiple distortion types
and multiple reference images.

1. INTRODUCTION

Accurate image and video quality estimators (QEs) can be
deployed into real systems to assist with a variety of applica-
tions. Absolute quality scores rate one image on an absolute
scale, and are useful for content acquisition and delivery, and
system provisioning. Relative QE scores, which rate the qual-
ity of one image relative to another, are useful for algorithm
optimization and product benchmarking [1].

Large-scale subjective tests have been relied upon to ad-
dress the question “Is this image quality estimator (QE) ac-
curate in the required situations?” [2, 3, 4]. However, large-
scale subjective tests are expensive and require careful con-
struction to achieve an accurate answer to this question. Fur-
thermore, it is difficult for subjective test designers to antici-
pate the wide variety of images encountered in a real system.

To be sufficiently robust across a wide variety of images,
a QE should be thoroughly tested. Therefore, we are de-
veloping a set of testing methodologies for image and video
QEs that build upon the well-established strategies of soft-
ware testing [5]. Instead of attempting to answer the chal-
lenging question “Is this QE accurate?”, we lower the burden
of proof and consider “Is this QE inaccurate?” [6, 7].

The following principles lie at the core of software testing
[5] and are directly applicable to testing image and video QEs
[6]. The goal of testing should be to find errors, not demon-
strate that the system satisfies its specifications. To find errors,
it is important to include both positive and negative tests, and
to consider conditions that are anticipated and unanticipated.
Test cases should be generated automatically and, because ex-
haustive testing is impossible, it is desirable to maximize the
expected number of errors using a fixed number of test cases.

In [6], we apply these principles to systematically create
targeted, small-scale subjective tests. The test cases are com-

prised of image pairs designed to have a high probability of
creating potential misclassification errors. Subsequently in
[7], we consider a complementary strategy which relies on
extensive computational search without expensive subjective
tests. In both, we demonstrate approaches that successfully
identify a variety of systematic weaknesses in many QEs.

In this paper, we present an automated approach to design
subjective tests with a high likelihood of finding one type of
misclassification error. In our design algorithm, a number of
existing QEs “vote”, first to create a list of individual pairs of
degraded images, and second to select the best collection of
pairs to test. The goal of this collaborative process is to build
a pairwise subjective test, whose results will provide valuable
information regarding the accuracy of all cooperating QEs.

Section 2 describes the misclassification errors that can
occur between an objective QE and the subjective assessment
it strives to mimic. Section 3 presents challenges of design-
ing subjective tests to identify systematic weaknesses. Our
collaborative approach to design the subjective test appears in
Section 4, while Section 5 demonstrates that this testing strat-
egy identifies significant vulnerabilities in a variety of QEs.
We conclude with a discussion of future work.

2. ACCURACY OF QUALITY ESTIMATORS

An ideal QE will produce values that are in perfect agreement
with subjective test scores. To characterize the deviations of
the actual QE scores from this ideal, it is typical to report the
root mean-squared error (RMSE), Pearson linear and Spear-
man rank-order correlation coefficients between the objective
and subjective ratings, and the outlier ratio [2]. Two addi-
tional measures that assess the ability of a QE to specify rel-
ative quality among pairs of images are the resolving power
and the misclassification error [8].

In this paper, we focus on identifying misclassification er-
rors between a given QE and subjective data [8], [9]. Defined
for a pair of images, there are three categories of misclassi-
fication errors: false ranking or false ordering (FO) (the ob-
jective QE rates an image pair opposite to the viewers), false
differentiation (FD) (the objective QE rates an image pair as
different but the viewers do not), and false tie (FT) (the view-
ers rate an image pair as having different quality but the ob-
jective QE does not).

Table 1 indicates the conditions necessary for the different
classification results. Here Wy, Es, and B, indicate the statis-
tical decisions that the first image has worse, equal, or better

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

© 2012 IEEE. This paper appeared in the IEEE International Conference on Image Processing, 2012


W FEs Bs
W, | correct decision | false differentiation | false ordering
E, | false tie correct decision false tie
B, | false ordering false differentiation | correct decision

Table 1. Classification results based on relative objective QE
and subjective results.

subjective visual quality than the second image, respectively.
Deciding B or Wy is achieved when subjective test partici-
pants agree sufficiently that we can reject the null hypothesis
that the two images have identical quality. The decision Ej
is actually inconclusive; it is the default decision when we
cannot reject the null hypothesis.

The decisions W,, F,, and B, indicate that the objec-
tive QE rates the first image to have worse, equal, or better
quality than the second image, respectively. These objective
decisions depend on a threshold, Ao, which is the necessary
absolute difference between the objective QE scores before
they are considered to be unequal.

3. CHALLENGES OF SUBJECTIVE TEST DESIGN

Finding a “bug” in a QE corresponds to finding a systematic
method to create image pairs that cause misclassification. The
traditional subjective testing strategies will generate samples
with misclassifications only randomly. The strategies in [10,
11] can only identify potential false ties. Various strategies in
[6] create either potential FTs or potential FOs. The goal of
this paper is to create as many False Orderings as possible. In
particular, given N = 2M + 1 QEs, we would like to design
a subjective test of K image pairs that maximizes the number
of FOs across the test.

3.1. Challenges of identifying FOs

Suppose we want to expose a suspected systematic weakness
in a specific QE. For example, suppose the QE cannot accu-
rately assess the relationship between blurry and noisy im-
ages. To do so, we need to select a pair of test images which,
when tested subjectively, will yield one of the three types of
misclassifications.

Figure 1 shows an example of a systematic weakness. A
star represents the first image of a potential test pair. The
curve indicates a set of potential images associated with a sys-
tematic weakness in the tested QE. We will choose the second
image of a potential test pair somewhere along this curve. The
dotted lines partition the plane into objective and subjective
decision regions.

The boundaries of the regions W,,, E, and B,, are easy to
identify using the QE we are testing; it is straightforward to
select an image that has a potential FT [10, 11, 6]. However,
a FT does not provide much information about the severity of
a systematic weakness; it only informs us that one exists.

Without subjective testing, the boundaries of the regions
Ws, Es, and By are unknown. Before testing, it is unknown
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Fig. 1. Misclassification regions and a systematic weakness.

whether a specific image on the curve in the W, region will
produce a FO, a FD, or a Correct Decision (CD). Herein lies
the challenge of exposing a suspected systematic weakness:
how shall we choose the second image of a test pair so that it
has a high probability of being in one of the regions labeled
FO or FD, and not in the regions labeled CD?

3.2. Proxies for subjective quality

In [6], we introduce the notion of using one more accurate
QE as a proxy for subjective quality when designing test pairs
for a second less accurate QE. Occasionally the proxy QE
identifies its own weakness. Using only one proxy finds no
more than one misclassification error in the two QEs.

In the current paper, we extend this concept to explore the
ability of a collection of QEs to provide mutual proxy infor-
mation to each other, with the goal of improving the effec-
tiveness of the test pair selection process. In our algorithm,
the QEs collaboratively determine the best test pairs so as to
explore the accuracy of each individual QE.

In our subjective test design process, multiple QEs “vote”
to decide which image pairs should be tested subjectively.
The voting procedure creates a collection of image pairs based
on the following goals:

1. The process should be fully automatic.

2. Each test pair should create as many FOs as possible.

3. The identified FOs should be as large as possible.

4. No test pair should produce a FD.

The second goal clearly conflicts with the third. For a pair
to achieve the second goal, the proxy QEs should disagree
as many times as possible about whether the second image
lies in region B, or W, relative to the first image. However,
requiring many simultaneous FOs limits the size of each FO.

It is also difficult to achieve the third and fourth goals si-
multaneously. The fourth goal is only achieved if the viewers
always decide either B or W;. Such a subjective decision is



more likely if the second image is located close to the bound-
ary between E, and W, in Figure 1. However, the third goal
is achieved for a given QE when the second image is just out-
side the unknown boundary of the E; region.

Finally, the fourth goal is most likely to be achieved when
the images in the pair are as visually dissimilar as possible.
However, if the two images are very dissimilar in quality, then
it is likely that all QEs are accurate enough to agree. Thus, the
second goal also conflicts with the fourth.

4. ALGORITHM FOR SUBJECTIVE TEST DESIGN
4.1. Problem definition and notation

Given N = 2M + 1 QEs, we would like to design a sub-
jective test of K image pairs that maximizes the number of
FOs across the test. K should be large enough to facilitate a
statistical comparison of the QEs, and is constrained only by
the number of reference images available. All QEs should be
monotonic in the desired range.

By design, each image pair is constructed so that at least
M QEs decide W,, at least M QEs decide B,, and no QEs
decide F,. Ideally, viewers will decide either Bs or W for
each of the K pairs selected by our algorithm.

Let D; and D5 be two (possibly different) distortions, and
let 1 and x5 be two (possibly different) reference images. We
assume here that exactly one of D; = D or x1 = x5 is true,
although this is not necessary. We describe the algorithm to
find pairs for which x; = x3; the algorithm to find pairs with
D; = D, is nearly identical.

Our proposed algorithm has two phases. In the first phase,
the QEs collaborate to form a collection of potential pairs, two
pairs for each reference image and combination of distortions.
The first image of each pair is a fixed initial degraded image.
The two second images lie at either endpoint of the interval
where the QEs maximally disagree. We choose two pairs,
because without subjective testing it is impossible to know
which side of the interval is most likely to create a decisive
visual difference.

In the second phase, the QEs collaborate to select a to-
tal number of pairs from the collection of potential pairs cre-
ated in the first phase. Longer intervals over which the QEs
maximally disagree are preferred to shorter intervals, because
these will more likely create at least one image pair that has
distinct visual quality.

In both phases, the QEs vote to identify maximal disagree-
ment. In Phase One, they vote on the existence of disagree-
ment. In Phase Two, they vote on its severity.

4.2. Algorithm

Begin by choosing N = 20/ 41 distinct QEs to collaborate, a
collection of reference images, and a collection of distortions.

Phase one: Choose two pairs, (y1,%4) and (y1,y3), for
each reference image x and each distortion pair {Dy, D2} in
the collection, using the following algorithm.

1. Pick a severity p; for D; to be applied to reference im-
age 1z to create test image y1 = Dy (21, p1)-

2. Create a dense sampling of distortion severities for Do
to create a pool of potential test images {2} .

3. Apply the N QEs to y; and all images in {gs}.

4. Compute a scaled QE value for each QE computed in
Step 3 using a nonlinear fitting function trained on a
subjective dataset.

5. For each scaled QE and degraded image yo in {2},
collect votes of preferred image inside pair (y1, y2) -

6. Determine interval of distortion severities in {¢2} for
which at least M QEs prefer y; and at least M QEs
prefer y2 and no QEs predicts equal quality.

7. Form two pairs, (y1,v$) and (y1, ), where y$ and y5
are the images from {g-} that lie at the endpoints of the
interval identified in Step 6.

The two pairs generated in Step 7 are the input to Phase 2
of the algorithm. There are two pairs for each combination of
reference image and distortion.

Phase Two: Choose K pairs from among the pairs gen-
erated in Step 7, using the following algorithm.

8. For each pair identified in Step 7, compute the sum

across the NV QEs of the absolute value of the differ-
ence of the scaled QE values for each image in the pair.

9. Pick the K/2 largest sums. Add the two image pairs
for each sum onto the list of pairs to test subjectively.
We use scaled QEs [9] in Step 4 and Step 8 to facilitate
equal treatment of all QEs and to select a common Ao across
the QEs for their decision about F,,.

5. SUBJECTIVE TEST

This section presents the design, implementation, and re-
sults of a subjective test that implements the proposed algo-
rithm. For this example, we select seven full-reference (FR)
QEs, which quantify image quality using a reference image:
Structural Similarity index (SSIM) [12], Information content
Weighted SSIM (IW-SSIM) [13], PSNR-HVS-M [14], Visual
Information Fidelity (VIF) [15], and Visual SNR (VSNR)
[16], for which implementations are available from their au-
thors, in addition to Peak Signal-to-Noise Ratio (PSNR) and
PSNR_A [17], which computes PSNR on the approximation
subband of a Haar wavelet decomposition. To compute the
scaled QEs, we train the nonlinear fitting function of [2] to
the subjective data in the CSIQ database [4], which results in
scaled QEs ranging between approximately O and 1. Choos-
ing a strict Ao = 0.01 for all scaled QEs sets a lower bound
on the minimum FO range.

We implement the algorithm of the previous section using
the reference images in the CSIQ database [4] and the seven
FR QEs above. We choose 70 image pairs that share a ref-
erence image but have different distortions among the four
we consider: Gaussian blur, JPEG-2000, JPEG, and Gaussian
noise. The voting algorithm results in all 70 pairs with blur-
ring, 20 pairs with JPEG-2000, 24 pairs with JPEG, and 26



Same ref. image | FO | FD | CD | FO range | FD range |

IW-SSIM 40 | 13 17 | 001-0.23 | 0.01 -0.31
PSNR 24 | 13 | 33 | 0.01-0.14 | 0.01-0.15
PSNR-A 15 13 42 |1 001-0.10 | 0.01 -0.13
PSNR-HVS-M 15 13 | 42 | 0.02-0.13 | 0.02-0.18
SSIM 42 | 13 15 | 001-0.39 | 0.03-0.46
VIF 31 13 26 | 001-021 | 001-0.23
VSNR 15 13 | 42 | 0.01-0.09 | 0.01-0.14
Same distortion

IW-SSIM 3 3 24 | 0.02-0.13 | 0.02-0.10
PSNR 24 3 3 0.01-0.18 | 0.06-0.10
PSNR-A 23 3 4 0.01-0.13 | 0.03-0.06
PSNR-HVS-M 16 3 11 0.01-0.07 | 0.01 -0.05
SSIM 20 3 7 0.01-0.17 | 0.02-0.07
VIF 3 3 24 | 001-0.11 | 0.03-0.09
VSNR 7 3 20 | 0.02-0.13 | 0.01 -0.06

Table 2. Number of actual misclassifications: False Order-
ings, False Differences, and Correct Decisions. There are no
False Ties. Ranges are for scaled QEs.

pairs with noise. We also choose 30 image pairs that have
different reference images but share either blurring or JPEG-
2000 distortion. The voting algorithm results in 8 pairs with
blurring and 22 with JPEG-2000.

We conducted a pair comparison subjective test using all
100 image pairs. Pairs were presented in random order, and
thirty viewers naive to the purposes of the experiment selected
which image of each pair they preferred. Viewers were in-
structed to rate the pairs based not on a preference for the
image content but instead on the technical quality of each im-
age. Each viewer took less than 15 minutes to complete the
subjective test.

Table 2 summarizes the number of actual misclassifica-
tions produced by each of the seven QEs using our subjective
test. By design, there are no FT for any of the QEs, and all the
correct decisions are correct orderings. Among all 100 pairs,
we have 84 pairs for which viewers expressed a statistically
significant preference for one image relative to another. Thus
16 pairs will each create a FD in every QE, not a FO.

The subjective test design uncovered FOs in each of the
QEs. The most FOs were uncovered for SSIM, the fewest for
VSNR. Repeating the process for a different combination of
QEs may identify additional FOs in VSNR.

6. CONCLUDING THOUGHTS

We presented a collaborative algorithm where multiple image
QEs vote to determine which image pairs should be incorpo-
rated in a subjective test. We designed and implemented such
a test, which demonstrated that there are still clear inaccura-
cies in existing QEs, even FR QEs. We suspect that the QEs
examined here are not alone. It would also be valuable to ap-
ply the methodology to evaluate No-Reference (NR) QEs in
their domain of interest. For example, we could test NR blur

QEs on blurry images, and NR blocky QEs on JPEG com-
pressed images.

This work is just one part of a framework that provides
more rigorous testing of QEs. Our testing indicates the need
to improve the current methodology of evaluating QEs. The
typical method of testing on generic specification-based sub-
jective databases is insufficient to expose weaknesses in QEs.
In future work, we will continue to extend the collection of
applicable tests within our developing framework.
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