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Background reading
(Transform coding)

* R.J. Clarke, Transform Coding of Images,
Academic Press, London, 1985, chapters 3&4

* W. K. Pratt, Digital Image Processing (2" ed),
Wiley, 1991, chapter 8

 Wang, Ostermann, Zhang, Video Processing
and Communications, Prentice Hall 2002,
Section 9.1



Transform Coding

« What, how, which, why, how good?



Encoder Block Diagram of a Typical
Block-Based Video Coder
(Assuming No Intra Prediction)
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Lectures 3&4: Motion estimation

Lecture 5: Variable Length Coding

Last lecture: Scalar and Vector Quantization

This lecture: DCT, wavelet and predictive coding
©Yao Wang, 2006



Transform Coding

* Motivation:

— Represent a vector (e.g. a block of image samples)
as the superposition of some typical vectors (block

patterns)

— Quantize and code the coefficients

— It is one type of a
constrained vector
guantizer
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General Linear Transform

e Basis vectors (or blocks):

[ Il = [uy. s, ....u\]
* Inverse transform represents a vector or block
as the superposition of basis vectors or blocks

inverse transform: s = Z frue = [UJt

* Forward transtorm determmes the
contribution (weight) of each basis vector

forward transform: t = [U]“'s = [V]s

Yao Wang, 2003 6
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Unitary Transform

e Unitary (orthonormal) basis:
— Basis vectors are orthogonal to each other and each has length 1

(Ug. uy) = Z_“k:n“’i” = Okl = {() ifk#1.

nen

17U = ugul” = My

* Transform coefficient associated with a basis vector is simply the
projection of the input vector onto the basis vector

* (Can also be thought of as an approximation

forward transform: 1 = {ug.s} or t=|[U Hg — [V]s
inverse transform: SES Z fu = [Ujt = vt
keN

Yao Wang, 2003
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Separable transforms for images

* Apply a 1-D transform on the rows, and then a
1-D transform on the columns (and continue,
if signal has more than 2 dimensions..)

* Basis images: u,g,'



Transform design

 What are desirable properties of a transform for image
and video?

— Nearly decorrelating — improves efficiency of scalar
guantizer

— High energy compaction — a few large coefficients to send
— Easy to compute (few operations)

— Separable — compute 1-D transform first on rows, then on
columns

 What size transform should we use?
— Entire image? Small?
— 2-D (on an image) or 3-D (incorporating time also)?

12



Karhunen Loeve Transform (KLT)

Optimal transform

Requires statistics of the input source
— Known covariance function

Coefficients are completely uncorrelated

The best energy compaction

— Sort coefficients from largest to smallest expected squared
magnitude; then the sum of the energies of the first M
coefficients is as large as possible

No computationally efficient algorithm

We'll derive it later

13



Other Transform Bases

 Optimal transform
— Karhunen Loeve Transform (KLT): Depends on the
signal statistics
* Suboptimal transforms — many available!
— Discrete Fourier Transform (DFT): complex values;
discontinuities
— Discrete Cosine transform (DCT): nearly as good as
KLT for common image signals

— Hadamard and Haar: basis functions contain only
+1,0,-1

14



DCT vs. DFT

DFT is complex; DCT is real

Consider continuous signal, sampled over
window of length N

When applying DFT, transform-domain is not
the isolated segment. Instead, that sampled
signal gets repeated. If left side is not same
value as right side, severe discontinuities

DCT equivalent to “folding” signal and
applying DFT



Discrete Cosine Transform:
8*8 Basis Images

inverse transform: s = Z trur = [UJt

forward transform: t=[U] 's = [V]s . l I I I I I I I |I I " " ""

I HLE iLEfimL LAl RRLl

i ER LR ERL AL

— B E PR PRl FEE FREY FEre

& Illll !Illllli !II.II! FIIIIIli

Example in Matlab:

D=dctmtx(8);
X=zeros(8);
X(4,3)=1;
Basis=D’ *X*D;
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Hadamard Transform:
8*8 Basis images

Example in Matlab:
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Energy/Variance Distribution of DCT
Coefficients in Typical Images
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Coefficient index in zigzag order

Yao Wang, 2003 Zigzag order; low horizontal and low vertical are earlier



Images Approximated by Different
Number of DCT Coefficients

Original With 16/64
Coefficients

With 3/64 With 4/64
Coefficients Coefficients

Yao Wang, 2003 19



Bit allocation for transform coding
(outline)

* Assumptions:

— 1-D transform; Scalar quantization with MMSE quantizer; Fixed-
length coding

* Goal: what is the average distortion and bit-rate per sample

 Computing distortion

* Optimal bit allocation among the N transform coefficients
— High rate approximation

* Performance improvement relative to pixel-based coding

e Examples

e Optimal transform design

Yao Wang, 2003 20



Distortion (MSE) in Transform Coding:
A statistical analysis

e Distortion in sample (image) domain

D, = SE(IS - SIP) = %2; Din  Dyw= E(Si— S0
e Distortion in coefficient (transform) domain

D, = },VE{MT -TI°} = ]VAZ\ D k Dy = E((T — T’}

* With a unitary transform, the two distortions
are equal
_ e _am L NHeT — 12
Ds = NE{IIé S|I7t = NE{II[\] (T =TI}
= iN,E{.:T -~ THIVIIVIPT - T)} = LN'E{”T -T|*}=D,.

Yao Wang, 2003 Average quantization error is same in sample and transform domains 21



Modeling Distortion Due to Coefficient
Quantization

* How much distortion is introduced by quantizing
the k-th transform coefficient?

* Use a high-resolution approximation of scalar

guantization

— MMSE quantizer; each coefficient is quantized with
high rate; pdf in each quantization bin is nearly flat

One coefficient D t(Ry) = ¢ A"z A2 2R,

|
Average over Dic=D =D, = — (2 2 52K
all coefficients shea . ol NE , kYt k= :

. >, Depends on the pdf of the k-th coefﬁuent

Yao Wang, 2003
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Optimal Bit Allocation Among
Coefficients

* How many bits to use for each coefficient?

— Can be formulated as an constrained optimization
problem:

. . - - l D al B
Minimize: Dic=D, =D ==Y e o727

13

‘ ke \

Subject to: AZ Ry = RN
(eN

— The constrained problem can be converted to
unconstrained one using the Lagrange multiplier
method

Minimize: J(R.VkeN) =) ¢’ o7 2%+ )_( > R - RN)
ke

ke N .
Yao Wang, 2003 23



Derivation and Result

If we let (0J /0 Ri) = 0, we obtain

= 2 In2D, , =—(2In2)el 0227 = —). VkeN
cf' A ! :

Multiply
to obtain:

}_N =(2In2) i (H éf-krrfk) 2_2 Zk Ry _ (2In2) e (H éikf'flz_k) 2_3‘\%
k k

I/N
TN : 2 .2 ~—2R
l= ‘.aln 2] (H (—l.k”l.k) 4 .

k

Substitute into _ .
first equation: Result: all distortions are equal!

2 2
TN N

1

,
27 (Meeiao) k

Yao Wang, 2003

1/ N
2 .2 ~2R
> N Dic=D, =D = (H‘z.k":.k) 27
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Implication of Optimal Bit Allocation

* Bit rate for a coefficient proportional to its variance
(energy)

I €0k

Ry = R+ = log, 7N

= (Hk‘f.k”:?k) \

[ Geometric mean}

» Distortion is equalized among all coefficients and depends
on the geometric mean of the coefficient variances

| /N
2 .2 ~N—2R
D['(‘ —_— Dl = DIA = (H (—l.k”l.k) 2 .

k

Yao Wang, 2003



Transform Coding Gain Over PCM

» Distortion for PCM if each sample is quantized to R bit:

—_ — 227 -2R
a’(‘f\'l - D.\'.N - (_\‘”_'.' 2

Dyem

+ Transform Coding Gain over PCM:  Gre = Do
Ic Arithmetic

/ mean
2 2 )

2 2 | 2
G Eg Uy €y N Z Uik
'l'(‘ — 7 \. — 5 .

5 /N /N TN
(ITe€inoie) (Ileein) ™ (Tleoi)

 For Gaussian source

— each sample is Gaussian, so that coefficients are also Gaussian,
all the same

‘_f.k

) | 2
Oy N Z Ut k
>N T — /N
( Hk T k) ( Hk k)

Yao Wang, 2003 26
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Example

 Determine the optimal bit allocation and corresponding TC
gain for coding 2x2 image block using 2x2 DCT. Assuming the
image is a Gaussian process with inter-sample correlation as
shown below.

O Q () 0
Oy=p,=p
&5 { Pr F &
_ 2
p fy 10 d — 10
<& ) O“ 0
o Q 0 O

Yao Wang, 2003
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Covariance between coefficients in
Transform Coding

* Cov(S) = E[(S-u¢) (S-us)’] = E(SST)-peuns’
» Cov(T) = E[(T-u;) (T-u;)'] = E(TT')-w 1,

e Assume zero mean

e T=[V]S
e Cov(T)=Cov([V]S)=E([V] SST[V]’)
= [V][Cov(S)][V]




Example Continued
(Convert 2x2 into 4x1)

« Covariance matrix
(assume zero mean)

 DCT basis images

» Equivalent transform matrix

Yao Wang, 2003
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Example Continued

[C], = [VI[C), VI —

n{%k — {'-] + /’:'2. (] — /JB). (]l — /)2 (] — i )2}(152

1 /4 .
2 2 o) S (1 (I‘- l
of = [lofs] =a-phods  CGre=T5=1"7

k {
| 2, 052
kYL k
RA — R + : 10g2 5 5 l,-"]\"' —_—
< (ILeereoie)

Rp = {4.64.2.2. —0.64}.  (for R=2)

Yao Wang, 2003 30



Optimal transform

Approach 1: Minimize the MSE introduced if we
omit a coefficient

— Start with smallest coefficient, then next, etc

Approach 2: Minimize the correlation between
different transform coefficients

Approach 3: Maximize the transform coding gain
G — Dpem
o=
All lead to same answer (assuming Gaussian
source): Karhunen Loeve Transform (KLT)




Optimal Transform: Design

If source is Gaussian, the optimal transform is the Karhunen-Loeve
transform, which depends on the covariance matrix between samples

— Basis vectors are the eigenvectors of the covariance matrix, the
coefficient variances are the eigenvalues
[(‘]S("‘)k = /-'.k(,'f)k. with '1:(,';)‘\.. (;f)/:} = «"‘)'k./. ”I? = //\

— The determinant is the product of the coefficient variances
[ o« = det[C], = det[C];.

ke
— The distortion > ) ds the RD
. | Dic- = ¢2 . (detlC1.)}/Ny—2R excee
for a given rate R: . Gaussian(de[Cls) “bound by a constant factor
— The transform coding gain for the KLT:
‘ : n: €2 r :
e I s SEE— ——
I'C.KI1 '\ l N |HL/A' HA A ,.' N '(let[(']\bl.' N

Yao Wang ' 32



What would be necessary to
implement in a real system?

Estimate the data covariance matrix
— For both row and column!

Compute eigenvectors to generate basis
vectors

Associate this KLT with the image
— Either when stored, or transmitted

But the relative gains for typical images is
small



Example gains: 15t order Markov
source, rho=0.91

Define efficiency to be the amount of source
energy contained in all coefficients up to and
including coefficient |

79.5 911 948 96.7 979 98.7 994
DCT 793 909 948 96.7 979 98.7 994 100

Hada 79.3 89.3 92.7 955 96.7 979 99 100
mard

DST 73.6 843 925 950 974 984 994 100

From R. J. Clarke, Transform coding of images, Prentice Hall, 1985. Chapter 3.



Properties of KLT

* The optimal transform for Gaussian sources
* Nearly optimal transform for non-Gaussian sources

* Minimal approximation error for K<N coefficients
among all unitary transforms

 KLT has highest energy compaction
e Coefficients are uncorrelated

* Requires a stationary source with known covariance
matrix — most sources vary spatially and temporally

* No fast algorithms — and not signal independent

Yao Wang, 2003 35



Example

« Determine the KLT for the 2x2 image block in the previous example
[ I ~h o ~d i
‘{ "h l s .'l,! ‘,‘ ,l',
Mo d 1 ~h
| Pd Pv Ph I

[Cl, = o]

Determine the eigenvalues by solving:  det([C], —A[I]) =0
A= {01+ ,'.'13. (1 — ;.-2 (1l — ,x-z'_ (1—p ;.3].'753.

(same as the coefficient variances with DCT)

Determine the eigenvectors by solving  ([Cl; — A[1]i¢y =0

Resulting transform is the DCT
(because this is a 2*2 example!!)

Yao Wang, 2003 36



Example: JPEG Image Coder

* Joint Photographic Expert Group
* Uses 8x8 DCT

e Each coefficient is quantized using a uniform
guantizer

e Step sizes vary based on coefficient variances
and their visual importance

* Quantized coefficients are converted into
binary bitstreams using runlength coding plus
Huffman coding

Yao Wang, 2003 37



JPEG: a bit more detail

Perceptual based quantization matrix: Zig-zag ordering of DCT coefficients:

6] 11 [ 1016 (24|40 [ 51 | 6] —

v

1201214 ]19| 26|58 | 60|55 / /

Y /
14 [ 13|16 |24 |40 |57 |69 356 7] / /
14 |17 (2229|511 |87 |80 |62 / / ¥

18 | 22| 37 | 56 | 68 [ 109|103 | 77 /

i
24 | 35|55 64 | 81| 104]113] 92 / /
49 | 64 | 78 | 87 | 103|121 ] 120 101 Py / //

rd
72 [ 92| 95 | 98 [112]100 | 103] 99 W AN A,

Runlength coding example:
DCT coefTicients: (S0023004000000100000...0]

Coding symbols: 5.(2.2). (0.3). (2.4), (6.1 ). OB
Yao Wang, 2003 38



Run-length coding

52071000

03 0000O0O
000O0O0O0O0O

0000O0O0OO0GO

0000O0O0O0O

0000O0O0O0O

0000O0O0O0GO

0000O0O0O0GO




Run-length coding

0 00
0000 (5)
00000 (0,2)

000000 (2,3)

000000O »(1,7)

00000000 (:(’3152

0000000 O

0000000 O

 Map 2-D quantized DCT coefficients into 1-D set of
pairs
— Uses “zigzag’ scan
— Number of consecutive zeros followed by coefficient value
 Works well, because there are typically lots of zeros



