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Compression Outline

Overview (an eye to video coding)
Lossless encoding

Quantization and vector quantization
Transform coding and wavelet coding
Predictive coding

Video coding (theory vs. practice)
Standardization

Video encoders



Think about compressing video

e Communicate what’s in the video
— What’s most important to send?

 Don’t send things twice

— What correlations are present in video?



Video Coding Techniques Based on
Different Source Models

TABLE 8.1 COMPARISON OF SOURCE MODELS, PARAMETER SETS, AND CODING TECH-

NIQUES.
Source model Encoded parameters Coding technique
Statistically independent pels Color of each pel PCM
Statistically dependent pels Color of each block Transform coding, predictive
coding, and vector quantization
Translationally moving Color and motion vector of each Block-based hybrid coding
blocks block
Moving unknown objects Shape, motion, and color of each Analysis-synthesis coding
object
Moving known object Shape, motion, and color of each Knowledge-based coding
known object
Moving known object Shape, color, and behavior of Semantic coding
with known behavior each object

©Yao Wang, 2006 Coding: Overview and Lossless Coding



Encoder Block Diagram of a Typical Block-Based Video
Coder
(Assuming No Intra Prediction)
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Last 2 lectures: Motion estimation

This lecture: Variable Length Coding
Next lecture: Scalar and Vector Quantization

And then: DCT, wavelet and predictive coding
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Components in a Coding System
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Lossless compression efficiency

 Compression efficiency depends on
— Probability of the source
— Algorithm (Huffman, Arithmetic coding)
— Probability model (its accuracy)

* Lossless coding used in Video compression
— Quantized transform coefficients
— Motion vectors
— Other side information



Probability and information theory
review

* A given signal is a realization of a random process

* Efficiency of a source-coding technique: how fully
are the source’s statistics exploited?

e Characterize a source signal (aka random
process):

— Probability: marginal, joint, conditional
— Entropy: joint, conditional



Probability models and statistical
characterization of random sources

e Source: a random sequence (discrete time
random process),

— Example: a video that follows a certain statistics
* F_ represents the possible value of the n-th pixel of a video, n=(k,m,n)
 f,represents the actual value taken in a realization

* Continuous source: F takes continuous values
(analog image)

* Discrete source: F  takes discrete values
(digital image)

©Yao Wang, 2006



Statistical Characterization
of Random Sources

* Stationary source:
— Statistical distribution is invariant to time (or space)
shift
— Statistics of Fn do not depend on the value of n
* Probability distribution

— probability mass function (pmf) or probability density
function (pdf): pr, () p(f)

— Joint pmf or pdf:
PFoit FrsrenFuen 12 2o fN) plhi. fo. IN)

— Conditional pmf or pdf:
PEFo FoaoFone e | e fagne oo hH) P | fare faroae o oo i)

©Yao Wang, 2006 10



Recall: Probability relationships

* Bayes rule:

p(4|B)p(B) = p(B| A)p(4) = p(4, B)
 Theorem of total probability

p(A) = Z p(A| B =b)p(B =b)

* Independent, identically distributed (iid;
memoryless)

P fasees for) = PO PSSP
P Svrai | Jors Fricioeos J1) = P vran)

ARReibman 2011 11



Probability models, and
three lossless coding options

|II

A single pixel (or “symbol”, ex: motion vector)

— Single-symbol entropy

Two adjacent pixels (or two dependent
symbols)

— Joint entropy, or conditional entropy
A block of N pixels
A block of N transform coefficients



Entropy of a RV

* Consider RV F={f,,f,,....f/}, with probability p,=Prob.
{sz/(}

* Self-Information of one realization f, : H,= -log(p,)
— p=1: always happen, no information

— P, near 0: seldom happen, its realization carries a lot of
information

* Entropy = average information ,; o _ _ S pr(frlog, pr(f).
feA

— Entropy is a measure of uncertainty or information
content, unit=bits — if we use base 2 for the logarithm

— Very uncertain =2 high information content

©Yao Wang, 2006 13



Entropy

* Provides bounds on compression efficiency for
ossless coding

e Larger when there’s more uncertainty in the
outcome of the random variable

 AVERAGE Information you obtain when you
learn the value of the random variable. You
obtain more information when you learn the
random variable had taken on an unlikely
value than had it taken on a likely value




Example: Two Possible Symbols

 Example: Two possible outcomes
— Flip a coin, F={"head”,”tail”}: p,=p,=1/2: H=1 (highest
uncertainty)

— If the coin has a defect, so that p,=1, p,=0: H=0 (no
uncertainty)

— More generally: p,=p, p,=1-p,
* H=-(plog p+(1-p) log (1-p))

0 1/2 1

©Yao Wang, 2006
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Example: English Letters

e 26 letters, each has a certain probability of

occurrence
— Some letters occur more often: “a”, “s”, “t’, ...

11 7 ke )

— Some letters occur less often: ', z, ...

* Entropy ~= information you obtained after
reading an article.

 We actually don’t get information at the alphabet
level, but at the word level!
— Some combination of letters occur more often: “it”,

o ”

qu”, ...

©Yao Wang, 2006 16



A single pixel (or symbol)

° Entropy H(F)=— Z pPrl fjl IOg3 Prl f ).
feA

* Scalar coding:
— Assign one codeword to one symbol at a time
— Difficulty: could differ from the entropy by up to 1

blt/SymbO| H] (F) < Rl ._’F’ ) < Hl (F b+ 1.




Two adjacent pixels
(or two dependent symbols)

* Two approaches

— Joint probability density function or probability
mass function

— Conditional probability

* Probability models accounting for relationship
among pixels (next page)



Probability Models incorporating
inter-symbol correlation

e 15t order Markov process
— A sample only depends on its immediate predecessor

 M-th order Markov process
— A sample depends only on its previous M samples

* (Gaussian process
— Any N samples form a N-dimensional Gaussian
distribution

e Gauss-Markov process (in 1D) or Gauss-Markov
Field (GMF) (in 2D)

— 1%t order GM: Covariance between two samples:

C(Fn,Fm)=0p"™"

ARReibman 2011 19



Joint entropy (high-level view)

* Entropy of more than one random variable,
together

feArgeA,

* Joint entropy is never bigger than the sum of
the two individual entropy. Might do better if
you code the symbols jointly

H(F.G) < HF )+ H(G)



Joint Entropy (more detail)

« Joint entropy of two RVs:  H(F.G)=- > > pro(f g log, pro(f g

— Uncertainty of two RVs together feAreehs

* N-th order entropy H(F.G) = H(F ) + H(G)

— Uncertainty of N RVs together
Hyi(F)y= H(F.F. .. .. FN)

= — Z plh. foo.... falog, plfi. foo ool fa)

©Yao Wang, 2006 21



Vector coding of N symbols

* Vector coding:
— Assign one codeword for each group of N symbols
— Larger N = Lower Rate, but higher complexity

* Entropy rate (lossless coding bound)

— As you take the limit of more and more random
variables, and divide by the number N of rv’s, the
resulting entropy rate provides the lossless coding
bound; it’s the average uncertainty per random
variable

— Entropy rate is not bigger than the entropy of a single
random variable; equal when samples independent

ﬁ(.’FJ = lim %H\:i.’/—' )

N0 |

©Yao Wang, 2006 22



Conditional Entropy

* Conditional entropy between two RVs:
— Uncertainty of one RV given the other RV

HF|G) =Y ps(g)HF|g)

gEA,

=—> pe(@ Y prigtflglog, prio(flg)
Q‘:"l ,.’:'{f

H(F)= H(F|G)
HF.G)y= HG)+ H(F |G)

©Yao Wang, 2006 23



Conditional Entropy

 M-th order conditional entropy

He pm(F) = H(Fpppy | Far Fpgre -0 Fy)
= Z plfii- fro.. .. Fa) HUF pon | e fare

[fio foue Fagl€AM

H(Fypr | fue fu—r..o0 i)
= — Z PCfasr | o Farmre oo 01082 PCSagr | fag Fare

FaeA

©Yao Wang, 2006
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Conditional coding
(context adaptive coding)

 The codeword for the current symbol depends

on the pattern formed by the previous M
symbols (the context)

* Use a separate codebook for each possible
context

25



Which is better?

* |t depends



Entropy rate

* Alower bound on lossless compression

* To achieve it requires coding an infinite # of
samples together

|
HF )= lim —Hy(F )= lim H: n(F).
N—oxo N Nosoo



Lossless coding options (1 and 2)

+ Scalar coding: H(F)< RI(F)< H(F)+1.

— Assign one codeword to one symbol at a time
— Difficulty: could differ from the entropy by up to 1 bit/symbol

* Vector coding:
— Assign one codeword for each group of N symbols
— Larger N > Lower Rate, but higher complexity

Hy(F ) = RY(F) = Hy(F )+ 1
H viF )/ N < R}\Hf F) = H\ (F )/ N + [/ N.

— Bit-rate can be arbitrarily close to the source entropy rate IF we
code many samples together

lim R\.-(.'Fil = H(F).
N—-oxX

©Yao Wang, 2006 28



Lossless coding options (3)

e Conditional coding (aka, context-based
coding)

— The codeword for the current symbol depends on

the pattern formed by the previous M symbols
(the context)

— Use a separate codebook for each possible

context ) _ ) )
("’.).\-I':'F ) = Rg’”,u(j: ) = H('!TM(-F ) + 1.

(entropy conditioned He m(F) = Rem(F) = Hoom(F )+ 1.

on context m)

HF )< lim Rey(F)=< HF)+ 1.

©Yao Wang, 2006 M—0oX



Which is better?

It depends (on the source)

H(F) = H(*_‘\.'_ll:.,}: ) = %Hg\'(.’}: ) = Hl‘::}'—).

Conditional and vector coding can both achieve a lower rate
than scalar coding

Conditional coding (for one symbol, conditioned on N-1
others) is at least as cheap as vector coding, but obviously
conditional coding requires you to have sent all the N-1
others first



Example: 4-symbol source

* Four symbols: Alphabet {“a”,”b”,”c”,”d"}
* Probability mass function:

p' =[p(a),p(b),p(c), p(d)]
p’ =[0.5000,0.2143,0.1703,0.1154]

* Compute 1st order entropy:

H, =-log(p(a))p(a)-log(p(b))p(b)-1log(p(c))p(c)-log(p(d))
=1.7707

Example 8.1 from page 236 of Wang, Ostermann, Zhang 31



Example: 4-symbol Markov source

* Also: a 1 order conditional pmf: g;=Prob(f./f)

| plala) palb) plale) plald) |
p(bla) p(b1b) pblc) pbld)

Q= p(cla) pclb) plcle)  pleld) iFZOC:I/EII:,J_)c.qumnjentr\/
pdla) pdlb) pdlc) pdld) orobability that Fn=i
- ] and Fn-1=j

e 2" order pmf:

pPlin-1. fu) = pUla—)g Ul | faor).

* Note that Qp=p; p is an eigenvector of Q; This is a stationary source

Example 8.2 and 8.3 from page 236-238 of Wang, Ostermann, Zhang 32



Example: 4-symbol Markov source

* Also: a 1** order conditional pmf: g,=Prob(f./f)

0.6250
0.1875
0.1250
| 0.0625

0.3750
0.3125
0.1875
0.1250

0.3750 0.3750

0.1875 0.1875 _

03125 0.1250 o omnentry

0.1250 0.3125 | probability that Fn=i
and Fn-1=j

pT =[0.5000,0.2143,0.1703,0.1154]
Ex. p("ab") = p("a")q("b"/"a") = 0.5%0.1875 = 0.0938

* H,/2 =1.7314 bits is the pair-wise joint entropy
* H.,=1.6922 bits is the average conditional entropy across the 4 contexts

ou_”n

* Conditional entropy for context “a” is 1.5016; for other contexts is 1.8829

Example 8.2 and 8.3 from page 236-238 of Wang, Ostermann, Zhang

33



Lossless encoding:
Symbols into binary



Lossless Coding (Binary Encoding)

* Binary encoding is a necessary step in any coding
system

— Applied to
e original symbols (e.g. image pixels) in a discrete source,

» converted symbols (e.g. quantized transformed coefficients)
from a continuous or discrete source

* Binary encoding process (scalar coding)

Bit rate (bit/symbol): R = Z plalia;).
a;eA Probability table

P;
©Yao Wang, 2006 35
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Again

* Three options:

— One symbol at a time

— A clumping of N symbols

— One symbol depending on what was sent earlier
* How-to

— Huffman coding (Fixed # symbols, variable # bits)

— Arithmetic coding (Variable # symbols, variable #
bits)



Morse Code

www. lgammaorsacoda.com

tree from www.learnmorsecode.com



Morse Code

vwww.learmmmorsecode.com

A= It Qm=== Y=ri==

B - Jl--- Rl-l Z-—" ::::.-:
c-l-l K-.- slll PeriOd'-'-'- 5'""

n-ll L= T- Commamm—: == G m==rrn
E. “-- u.._ ?ll--ll 7--...

Fll-l N - v..._ ,‘-ll-l

Gmm: Ommm Wim= ===

Hllll P'--' x-"-

chart from www.learnmorsecode.com

See also http://letterfrequency.org/
for some interesting orderings of
English letters, including di-graphs and
tri-graphs



Designing binary codes

Represent each symbol as a sequence of bits, called a codeword

* A good code should be:

— Uniquely decodable and a prefix code

Codebook 1 Caodebook 2
(a prefix code) (not a prefix code)
Symbol Codeword Symbol Codeword
a 0" a 0
a5 “107 s 017
ay 1107 1 “100”
ay “1e ay 0117
Bitstream: 0011010110100

Decoded string based on codebook 1:  0[0]1 10[1 0[1 1 0[10/0—a) a; a;a; a5 a; 19,
(can decade instantaneously)

©Yao Wang, 2006 Decoded string based on codebook 2: - 0j0 1 1O 1O 1 1{O]1 00— a, a, 9, aya) a3 39
(must look ahead to decode)



Huffman Coding

* Idea: more frequent symbols = shorter codewords
e Algorithm:

Step 1: Arrange the symbol probabilities p(ay). [ =1.2. .. .. L, in a decreasing order
and consider them as leaf nodes of a tree.

Step 2: While there is more than one node:

(a) Find the two nodes with the smallest probability and arbitrarily assign 1
and O to these two nodes.

(b} Merge the two nodes to form a new node whose probability is the sum of
the two merged nodes. Go back to Step 1.

Step 3: For each symbol, determine its codeword by tracing the assigned bits from the
corresponding leaf node to the top of the tree. The bit at the leaf node is the
last bit of the codeword.

e Huffman coding generates a prefix code
e Can be applied to one symbol at a time (scalar coding), or a group of symbols (vector
coding), or one symbol conditioned on previous symbols (conditional coding)

©Yao Wang, 2006 40



Huffman Coding Example:
Scalar Coding

Example 8.1 from page 236 of Wang, Ostermann, Zhang

Codeword Codeword
Symbol Probability

length

. I l .,

“a 0.5000 “1 |
I
“h” 0.2143 10 “01™ 2
l (0 '

T 0.1703 S 0 0.5000) 001 3

. ,, 0 0.285 .
“d 01154 — U L “000” 3

Bitrate R = 1.7857  Entropy H, = 1.7707

Huffman coding can NEVER use LESS than 1 bit per symbol

©Yao Wang, 2006 41



Huffman Coding Example:
Vector Codin

Example 8.2 from page 236-237 of Wang, Ostgrmann, Zhang

Reordered
Symbol  Probability  symbol Probahility Codeword Length
“aa”™ 03125 “ar” 03125 ' 1 2
“ab” 00038 ——"ab" 00938 ' .-t 01 3
“ac” 00625 “ha 00804 ' | —— “1001" 4
ad” 00813 3 cbhT 0.0670 — Bl o ot 4
bat 00804 “a” 00639 — 150 (*aw . “1010" 4
SRR -

‘bbt 006707} et 00625 : L | = F 0ol 4
bt 02 Y w0532 U T 0001t 4
“bd”  0.0268 “dat 0.0433 j MG " “0101" 4
“ed” 00639 “het 00402 — 08D “0100" 4
“eb” 00319 “dd” 00361 —IJ._ 5 “10001" 5
e 032 b 00319 — orlsE “00101" 5
“ed” 00213 ad” 00313 — 20632 “00100" 5
“da” 0433 0N/ b 0.0268 j 0 000013
“dbT 00216 “dh” 00216 —3.0484 “0000" 5
“de” 00144 '

“ed” 0.0213 3—0 “100001™ 6

R*= 35003  H,=34620



Huffman Coding Example:

Conditional Coding (context “b”)

Symbol Probability

ta/ b 0.3750
b/ b 0.3125
RS 0.1875
“dp” 0.1250

I

()
O] 3125

Re e = 19375

Codeword
|
. l ”»
r “M l "
1.0 -
()
6250 0017
000"

11(“--'.," = |.8829

RC,"a" = 1'5625’RC,"b" = RC,"C" = RC,"d" = 1.9375, RC,I = 1.7500
He g =1.5016, H .y = Hevpo = He o = 1.8829, H. | =1.6922

©Yao Wang, 2006 Example 8.3 from page 238 of Wang, Ostermann, Zhang

Length

I

[

'oJ
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Arithmetic Coding

 Another form of variable length coding: more frequent
codewords should be shorter

* Variable number of symbols are mapped into a
variable number of bits

* Any sequence of symbols is represented by an interval,
[L,u), somewhere in the unit interval [0,1).

 More likely sequences are represented by longer
intervals

* Torepresent any interval, we need only enough bits to
get ANY value within that interval

* Longer intervals require fewer bits

ARReibman 2011 44



Arithmetic Coding (2)

» Calculate the interval sequentially

— Keep track of the binary representations of
both /and u

— For each new symbol, the interval is further
divided

— When the MSBs of both / and u match, this bit
IS transmitted

dp = dy_ * Pi. ln = lp—1 + dn— *¥qr-1. Up= ln + d.

©Yao Wang, 2006 45



P(a)=1/2
P(b)=1/4
P(c)=1/4

Encoding:

Uy
M
bits

Decoding:

ol

I
0=(P0O0000)
I
1=(1000000)
I

..h“
! -
lhc“ ‘.uc
3 3
1 8
uhn uah"
1
2 4
ua" "'J"l"
0

I
1/4=(D100000)
I
3A8=(N110000)
I

ptE

Received bits

o
“g]™
0107
“0100™
“01001™
0100117

|
7..' ws

I
T

|
1 4= 10P000)

u[)“

(a)

“abc”

o

19

1
T

“abac”

“abab™

“abaa”

2
16

“abacc”

I I
19/64=(0100110)  19/64=(010P110)
I I I
5/16=(0101000) SN6=(0101000) - 39/128=(010pP111)
I I I

Interval Decoded symbol

[0.1/2)
[1/4.1/2)
[1/4.3/8)
[1/4.5/16)
[9/32.5/16)
[19/64.5/16)

(h)

Asa"
nsb“
na"
uc“

hl() l l "



Implementation of Arithmetic Coding

* Previous example is meant to illustrate the
algorithm in a conceptual level

— Require infinite precision arithmetic

— Can be implemented with finite precision or integer
precision only

* For more details on implementation, see

— Witten, Neal and Cleary, “Arithmetic coding for data
compression”, J. ACM (1987), 30:520-40

— Sayood, Introduction to Data Compression, Morgan
Kaufmann, 1996

©Yao Wang, 2006 47



Huffman vs. Arithmetic Coding

* Huffman coding
— Convert a fixed number of symbols into a variable length codeword
— Efficiency: | _ | |
Hy(F )/N = Ry(F) = HyiF ) N+ 1/N.
— To approach entropy rate, must code a large number of symbols together
— Used in all image and video coding standards

* Arithmetic coding

— Convert a variable number of symbols into a variable length codeword
— Efficiency: Hx(F)/N = R<= Hy(F)/N+2/N. N is sequence length

— Can approach the entropy rate by processing one symbol at a time

— Easy to adapt to changes in source statistics or to adapt to a context

— Used as advanced options in earlier image and video coding standards

— Becoming standard options in newer standards (JPEG2000,H.264)

— Noticeable improvements in H.264 vs. Huffman coding; now heavily used

©Yao Wang, 2006
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Summary

* Coding system:
— original data 2 model parameters—>quantization—> binary encoding
— Waveform-based vs. content-dependent coding

* Characterization of information content by entropy
— Entropy, Joint entropy, conditional entropy
— Mutual information

* Lossless coding

— Bit rate bounded by entropy rate of the source

— Huffman coding:
e Scalar, vector, conditional coding
* can achieve the bound only if a large number of symbols are coded together
* Huffman coding generates prefix code (instantaneously decodable)

— Arithmetic coding
* Can achieve the bound by processing one symbol at a time
* More complicated than scalar or short vector Huffman coding

©Yao Wang, 2006
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