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Outline 1/24/17

* Motion estimation
* A computer assignment



Reading resources

J. Konrad, “Motion Detection and Estimation”, Chapter 3 in A. Bovik
(ed.), The Essential Guide to Video Processing, Elsevier, 2009.
A. M. Tekalp, Digital video processing, Prentice Hall, 1995

— Chapter 5:5.1,5.2

— Chapter 6:6.1,6.3,6.4
Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and
Communications, Prentice Hall, 2002.

— Chapter 5.1, 5.3.2, 5.5: Video Modeling

— Chapter 6.1-6.4, 6.7, 6.9, skip Sec. 6.4.5, 6.4.6:
Two-dimensional motion estimation

— Appendix A and B: Gradients and steepest descent

R. Szeliski, Computer Vision: Algorithms and Applications, Springr
2010, Chapter 8



Summary (last class)

3D Motion

— Rigid vs. non-rigid motion

Camera model: 3D - 2D projection

— Perspective projection vs. orthographic projection
What causes 2D motion?

— Object motion projected to 2D

— Camera motion

Models corresponding to typical camera motion and object
motion

— Piece-wise projective mapping is a good model for projected rigid
object motion
— Can be approximated by affine or bilinear functions

— Affine functions can also characterize some global camera motions

Ways to represent motion:
— Pixel-based, block-based, region-based, global, etc.

©Yao Wang, 2003



Motion Field Corresponding to
Different 2-D Motion Models

Translation

Bilinear

©Yao Wang, 2003
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Region of support for representation of

Global:

Entire motion
field is
represented by
a few global
parameters

Block-based:
Entire frame is
divided into
blocks, and
motion in each
block is

characterized by
a few parameters.
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Pixel-based:
One MV at each
pixel, with some
smoothness
constraint
between
adjacent MVs.

Region-based:
Entire frame is
divided into regions,
each region
corresponding to an
object or sub-object
with consistent
motion, represented
by a few
parameters.



Motion estimation algorithms

* Motion representation
— Pixel-based, block-based, mesh, global motion, ..
* Optimization criteria

— Minimize displaced frame difference, optical flow,
while subject to constraints ..

* Optimization strategies

— Gradient descent, exhaustive search, ..



Motion estimation outline

« 2D motion and optical flow

* Motion estimation
— General methodologies

— Pixel-based
— Block-based



Apparent motion, or optical flow

e 2D velocity (object motion projected onto the
image plane) is NOT the same as optical flow

 Example 1: constantly lit sphere rotating

 Example 2: still sphere with changing lighting
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Optical flow derivation (1)

» Constant intensity assumption (ambient
and diffuse lighting)

Y(x+d,y+d, t+d)=y(x,y,t)

» Taylor’'s expansion

Y(x+d,y+d t+d)=9(x,y,t)+— 1/J a—wd +8_?/Jd

ax ay T ay
* So clearly awd A z,u zpd 0
0x Jy Ea Ot

Assuming d, is small
_wv + _wv + _w =()

y so thatv, d d,
From ©Yao Wang, 2003 Gx ay at /
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Optical flow derivation (2)

« Constant intensity assumption
dy(x,y.1) _
» Apply chain rule dt

oy dx oypdy oy _dy = oy Y _

+—=——V +—V +—

0x dt dy dt dt Ox dy ° 0ot

Two approaches, same assumption, same answer

From ©Yao Wang, 2003 11



Flow equation

—wv +—wv +—w—0 or Vy V+aw

0x dy ~ ot ot

e Can only estimate motion in direction of the
spatial gradient

* Applies to a single point only



Ambiguities in Motion Estimation

« Optical flow equation only ¥
constrains the flow vector
in the gradient direction v,

« The flow vector in the
tangent direction (V) is
under-determined

* In regions with constant
brightness (Vi =0), the
flow is indeterminate -
Motion estimation is
unreliable in regions with
flat texture, more reliable
near edges

©Yao Wang, 2003 13



lnaccuracies

* Object boundaries

— Motion estimation more reliable around strong edges,
but strong edges are likely to be where two objects
move differently

* QOcclusion
— No correspondence exists for (un)covered background

 The aperture problem

— This is an underconstrained problem; one equation,
two unknowns. Tangent direction is undetermined

— “Aperture” must contain at least 2 different gradient
directions



Flow equation

gy dy Iy

—v +—v +—=0 or VI/JTV+a—w=
ox dy ot ot

 May not hold exactly for real images

— Noise, aliasing, illumination variations, ..

* Instead, minimize some function of

oy  dy Y

—V, +—V, +—
0x dy ot



Two categories of approaches
for Motion Estimation

» Feature based (more often used in object
tracking, 3D reconstruction from 2D)
— Find motion only for sparse points
— Impose a motion model to estimate a dense
field

* Intensity based (based on constant
iIntensity assumption) (more often used for
motion compensated prediction, required
In video coding, frame interpolation)

©Yao Wang, 2003 16



General Considerations
for Motion Estimation

* Three important questions

— How to represent the motion field?
(ex: dense or sparse? Region or )

— What optimization criteria to use to estimate
motion parameters?

* Depends on the application; compression minimize
average prediction error; motion-compensated
iInterpolation minimize maximum interpolation error

— How to search for the best motion
parameters?

©Yao Wang, 2003 17



Mix-and-match

Motion representation
Optimization criteria
Optimization strategies

Examples:

— Pixel-based representation, DFD, gradient descent
— Pixel-based representation, OF, least-square

— Block-based representation, DFD, exhaustive search
— Block-based representation, DFD, hierarchical search

— Mesh representation, DFD, iterative search
— Global motion



Notations

Motion parameters:
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Mapping function:
w(x;a)=x+d(x;a),XEA



Motion Estimation Criteria

* Minimize the displaced frame difference (DFD)
Eppp (@) = g{\‘l//z (x+d(x;a)) - l/fl(x)‘p — min
p=1:MAD; P=2:MSE

« Satisfy the optical flow (OF) equation
Eor(@) = 3 (V9 (9) d(xa) + 9,0 -, (9] > min

* Impose additional smoothness constraint using regularization
technique (Important in pixel- and block-based representation)

E@=Y Yldxa)-d(y;a)

XEA yEN
WpepEpep (3) + W E (a) — min

©Yao Wang, 2003 20



Optimization Strategies
to find Min. or Max.

« Exhaustive search
— Typically used for the DFD criterion with p=1 (MAD)
— Guarantees reaching the global optimal

— Computation required may be unacceptable when there are many
parameters to search simultaneously!

— Fast search algorithms reach sub-optimal solution in shorter time
« Gradient-based search

— Typically used for the DFD or OF criterion with p=2 (MSE)

» the gradient can often be calculated analytically
* When used with the OF criterion, closed-form solution may be obtained

— Reaches the local optimal point closest to the initial solution

e Multi-resolution search
— Search from coarse to fine resolution, faster than exhaustive search
— Less likely to be trapped into a local minimum

©Yao Wang, 2003 21



High-level Framework

Motion representation
Optimization criteria
Optimization strategies

Mix and match

— Pixel-based representation, DFD, gradient descent
— Pixel-based representation, OF, least-squares

— Block-based representation, DFD, exhaustive search
— Block-based representation, DFD, hierarchical search

— Mesh representation, DFD, iterative search
— Global motion

ARReibman 2011 22



Block Matching Algorithm

Overview:

— Assume all pixels in a block undergo a translation, denoted by a single
MV

— Estimate the MV for each block independently, by minimizing the DFD
error over this block

Minimizing function:
Enpp(d,y,) = E ‘l/Jz (x+d,) -y, (X)‘p — min
XEBI’I’Z

Optimization method:

— Exhaustive search (feasible as one only needs to search one MV for all
pixels in the block), using MAD criterion (p=1)

— Fast search algorithms
— Integer vs. fractional pel accuracy search

©Yao Wang, 2003 23



Exhaustive Block Matching Algorithm
(EBMA)

Target f@aroe
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Complexity of Integer-Pel EBMA

* Assumption
— Image size: MxM
— Block size: NxN
— Search range: (-R,R) in each dimension
— Search stepsize: 1 pixel (assuming integer MV)
« Operation counts (1 operation=1 “-”, 1 “+”7 1 “*"):
— Each candidate position: N*2
— Each block going through all candidates: (2R+1)"2 N*2
— Entire frame: (M/N)"2 (2R+1)"2 N*2=M"2 (2R+1)"2
* Independent of block size!
 Example: M=512, N=16, R=16, 30 fps
— Total operation count = 2.85x1048/frame =8.55x10"9/second
* Regular structure suitable for VLS| implementation
« Software-only implementation slow

©Yao Wang, 2003



Pseudo-code/Matlab Script for
Integer-pel EBMA

%f1: anchor frame; f2: target frame, fp: predicted image;
%mvx,mvy: store the MV image
%widthxheight: image size; N: block size, R: search range

for ii=1:N:height-N,
for jj=1:N:width-N %for every block in the anchor frame
MAD_min=256*N*N;mvx=0;mvy=0;
for kk=-R:1:R,
for lI=-R:1:R %for every search candidate
MAD=sum(sum(abs(f1(ii:ii+N-1,jj:jj+N-1)-f2(ii+kk:ii+kk+N-1,jj+1:jj+I1+N-1))));
% calculate MAD for this candidate
if MAD<MAX_min
MAD_min=MAD,dy=kk,dx=ll;
end;
end;end;
fp(ii:ii+N-1,jj:jj+N-1)= f2(ii+dy:ii+dy+N-1,jj+dx:jj+dx+N-1);

%put the best matching block in the predicted image
iblk=(floor)(ii-1)/N+1; jblk=(floor)(jj-1)/N+1; %block index
mvx(iblk,jblk)=dx; mvy(iblk,jblk)=dy; %record the estimated MV

end;end;

Note: A real working program needs to check whether a pixel in the candidate matching block falls outside the image
boundary and such pixel should not count in MAD. This program is meant to illustrate the main operations involved. Not the

actual working matlab script.
©Yao Wang, 2003



Fractional Accuracy EBMA

« Real MV may not always be multiples of pixels. To allow sub-pixel
MYV, the search stepsize must be less than 1 pixel

- Half-pel EBMA: stepsize=1/2 pixel in both dimension

 Difficulty:
— Target frame only have integer pels
e Solution:

— Interpolate the target frame by factor of two before searching

— Bilinear interpolation is typically used
« Complexity:

— 4 times of integer-pel, plus additional operations for interpolation.
« Fast algorithms:

— Search in integer precisions first, then refine in a small search region in
half-pel accuracy.

©Yao Wang, 2003 27
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Bilinear Interpolation

(oY) (xH1,y) (2x{2y)  (2%+1,2y)
o o &—O
) I ) )
G/ G/ G/

(2%,2y+1) (2I+1 2y+1
@ @ @ O @ O
(x,y+!) (x+1jy+1)

) ) ) )
G/ G/ G/ G/

O[2x,2y]=1[x,y]

O[2x+1,2y]=(I[x,y]+H[x+1,y])/2
O[2x,2y+1]=(I[x,y]+[x+1,y])/2
O[2x+1,2y+1]=(I[x,y]+[x+1,y]+I[x,y+1]+|[x+1,y+1])/4

©Yao Wang, 2003




target frame

Motion field

SIEMENS

VOV v VYV VY VY Y Y Y Y vV VY
A O VERLFARNVTWIAY Vv VY v SRR WS v

AN W v v T VI

-

v v v v v v v v B

v

ik =
>

3

T
M

7\

~ *
> >

¢

>

TN\ ML

7 LPRIRRORRI NN
A L ~ N
f\"\"'\"\z\'\ '< -
L e'\‘\ i\ >

A

e
. . S
>

Y f/k i 2 ) i

< '\l >
(slf\ LS

N '\\ r\\ \'\> :

VvV v V V Vv V V v v

s | L /,/‘ A

y » \g"\v\f\"\&

3

>
v

- ‘-\f\‘\'\

] ¥

p-"%" -«
3 3 TR 7‘.‘.r

-> A% 3. & THREER! 2

Example:

\‘lSIEMEh

S

SIEMENS

Half-p

el EBMA

o\ &

anchor frame

Predicted anchor frame (29.86dB)



Problems with EBMA

Motion field is chaotic
— Each block’s motion vector is computed independently
— Many possible matches, especially in smooth regions

DFD is not uniformly small within block

— Poor motion model:
* Block may contain multiple motions
* Block does not undergo translation
* lllumination changes

DFD is not uniformly small across block boundaries

— Poor motion model: Adjacent pixels can have very
different motions

Slow

ARReibman 2011



Minimizing problems with EBMA

Motion field is chaotic
— Use hierarchical search

— Impose smoothness constraints (including mesh-based
model)

DFD is not uniformly small within block

— Improve motion model (Deformable and mesh-based
models; region-based estimation; compensate for variable
illumination)

DFD is not uniformly small across block boundaries
— Mesh-based motion models; compute pixel-based motion

Slow
— Use fast algorithms and hierarchical search

ARReibman 2011 32



Fast Algorithms for BMA

 Two key ideas to reduce the computation in EBMA

— Reduce # of search candidates:
* Only search for those that are likely to produce small errors.

* Predict possible remaining candidates, based on previous search
result

— Reduce the computation for each candidate by simplifying
the DFD error measure

e Subsample and don’t compute DFD on all possible pixels
* Many many fast algorithms

— Three-step
— 2D-log
— Conjugate direction

©Yao Wang, 2003 33



Summary (so far this class)

Constraints for 2D motion

— Optical flow equation

— Derived from constant intensity and small motion assumption
— Ambiguity in motion estimation

Estimation criterion:

— DFD (constant intensity)

— OF (constant intensity+small motion)

Search method:
— Exhaustive search, gradient-descent, multi-resolution

— Most accurate representation, but also most costly to estimate

Block-based motion estimation
— Good trade-off between accuracy and speed

— EBMA and its fast but suboptimal variants are widely used in video coding
for motion-compensated temporal prediction.

©Yao Wang, 2003 34



Computer assignments

 Due Monday 2/6/17 at 7am
— See assignment 1 posted online

35



Optimization Strategies
to find Min. or Max.

« Exhaustive search
— Typically used for the DFD criterion with p=1 (MAD)
— Guarantees reaching the global optimal

— Computation required may be unacceptable when there are many
parameters to search simultaneously!

— Fast search algorithms reach sub-optimal solution in shorter time
« Gradient-based search

— Typically used for the DFD or OF criterion with p=2 (MSE)
» the gradient can often be calculated analytically
* When used with the OF criterion, closed-form solution may be obtained

— Reaches the local optimal point closest to the initial solution

* Multi-resolution search
— Search from coarse to fine resolution, faster than exhaustive search
— Less likely to be trapped into a local minimum

©Yao Wang, 2003 36



Multi-resolution Motion Estimation

* Goal: Reduce computation and approach globally
minimal solution

 First: Estimate the motion in a coarse resolution over
low-pass filtered, down-sampled image pair

— May lead to a solution closer to the true motion
field
* Second: Modify the initial solution in successively
finer resolution within a small search range
— Reduces the amount of computation

* Can be applied to different motion representations,
but we will focus on its application to BMA

©Yao Wang, 2003 37



Hierarchical Block Matching Algorithm
(HBMA)

A ne hor frame

©Yao Wang, 2003 38
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Example: Three-level HBMA
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target frame

Motion field
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Computation Requirement of HBMA

* Definitions
— Image size: MxM; Block size: NxN at every level; Levels: L
— Search range:
o 1stlevel: R/27(L-1) (Equivalent to R in L-th level)
» Other levels: R/27(L-1) (could be smaller — since motion error is likely to be small)
e QOperation counts for EBMA
— image size M, block size N, search range R
— # operations: M2(2R+1)2
* Operation counts at L-th level (Image size: M/27(L-1))
(M /24 )2(2}3/2L‘1 + 1)z
 Total operation count

L ) ) .
;(MQL 1)2(2R/2L 14,1)2 z§4 (L-24 112 R2

Saving factor: 3.4(L-2) _ 3(L=2);12(L =3)

©Yao Wang, 2003



Optimization Strategies
to find Min. or Max.

« Exhaustive search
— Typically used for the DFD criterion with p=1 (MAD)
— Guarantees reaching the global optimal

— Computation required may be unacceptable when there are many
parameters to search simultaneously!

— Fast search algorithms reach sub-optimal solution in shorter time

 Gradient-based search

— Typically used for the DFD or OF criterion with p=2 (MSE)

 the gradient can often be calculated analytically
* When used with the OF criterion, closed-form solution may be obtained

— Reaches the local optimal point closest to the initial solution

* Multi-resolution search
— Search from coarse to fine resolution, faster than exhaustive search
— Less likely to be trapped into a local minimum

©Yao Wang, 2003 43



Gradient Descent Method

« lteratively update the current estimate in the direction opposite the gradient
direction.

1) N3 dJ

X =X — U —

c'.l‘x

X'
Not a good initial

A good initial

Appropriate
stepsize

Stepsize
too big

* The solution depends on the initial condition. Reaches the local minimum closest
to the initial condition
« Choice of step side:
— Fixed stepsize: Stepsize must be small to avoid oscillation, requires many iterations

— Steepest gradient descent (adjust stepsize optimally) 44
©Yao Wang, 2003



Newton’s Method

« Newton’s method

o J
-’A" I' .‘l‘. '.l:'. _l '
X =x" —eHEY)] T —
l "x \‘.'
=J 12., »=J T
11 dx 1 1-4 ) tj'.".'|-"‘.\fi\'
02 =J '.3‘/ )=J
[H‘\l] = F = .:I.‘u_'_w_.:f,'a_'l .:I,'a_'_w_.‘n‘,'t_'_) lj'.'l.';\.‘l'irf\‘
2] 32J )=J
| dxgdx, Oxgoxy  OxgoXxg

— Converges faster than 1st order method (l.e. requires fewer number of iterations to reach
convergence)

— Requires more calculation in each iteration

— More prone to noise (gradient calculation is subject to noise, more so with 2"9 order than with
1st order)

— May not converge if \alpha >=1. Should choose \alpha appropriate to reach a good
compromise between guaranteeing convergence and the convergence rate.

©Yao Wang, 2003 45



Reminder: high-level framework

Motion representation
Optimization criteria
Optimization strategies

Mix and match

— Pixel-based representation, DFD, gradient descent
— Pixel-based representation, OF, least-squares

— Block-based representation, DFD, exhaustive search

— Block-based representation, DFD, hierarchical search

— Mesh representation, DFD, iterative search
— Global motion

ARReibman 2011
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Pixel-Based Motion Estimation

 Multipoint neighborhood method

— Assuming every pixel in a small block surrounding a
pixel has the same MV

 Horn-Schunck (1981) method

— OF + smoothness criterion

e Pel-recursive method

— MV for a current pel is updated from those of its
previous pels, so that the MV does not need to be
coded

— Developed for early generation of video coder

©Yao Wang, 2003
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Multipoint Neighborhood Method

* Estimate the MV at each pixel independently,
by minimizing the optimization criterion over a
neighborhood surrounding this pixel

* Every pixel in the neighborhood B(x) is
assumed to have the same MV

e Case 1: Gradient descent with DFD criterion

Eppp(d,) = Y w(xy,(x+d,) -3 (x)” — min
XEB(X,,)

* Case 2: Least-squares with OF criterion
Eo(d))= 3 w(x)|(Vi,(0) d,, +9,(x) =9, (x)| —min
xEB(x,,)
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Example: Gradient Descent Method

Epp(d,) = 2 w(xX)l,(x+d,) -1, (x)|” — min
XEBL(X,)

OE X,
d)= = w(x)e(x +d 2
g(d,) d XE;%)( )e( .) x

n x+d,

First order gradient descent :

d (1+1) — dn(l) iy g(dn(l))

n

©Yao Wang, 2003
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Example: Gradient Descent Method

2 .
Eppp(d,) = W(X)‘wz (x+d,) -y, (X)‘ — min
XEBL(X,)
o) =2 = S umex+d,) V2
od, %) 0X xed,

9°E dw, (o, \ 9%y
[Hd,)]-— = w(x)—2 [ 222 rw(x)e(x+d, )22

adn XEBL(X,,) aX aX +d Gx x+d

First order gradient descent :

dn(l"'l) — dn(l) —a g(dn(l))

Newton - Raphson method:

4, =," ~a|H," ] 'g(,”)

©Yao Wang, 2003
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Least-square solution:
OF Criterion

Eor@)= S wx)(Vy(0) d, +95(x) ~,(x) —min

x€B(x,)
) T : -
O S w((Ver (0 d, +1,(x) -9, (0 F p,(x) =0 Unique minimum.
ad, 5k ) Solve directly.

-1

dn,opt=( 2w<x)wl<x>(wl<x>)T] ( Swx)@, () =9, (x))V (%)

XEB(X,,) XEB(x,)

The solution is good only if the actual MV is small. When this is not the
case, one should iterate the above solution, with the following update:

I+1 / Intuitively, this takes
I/jz( )(X) =y (x+ d“( )) the targe»': image and

d "V =d D +a D shifts it by the best
known vector. This
makes the small-motion
approximation more
valid >

where An(m) denote the MV found at that iteration

©Yao Wang, 2003



Horn and Schunck (1981)

Pixel-based motion

Combine flow equation with smooth-motion
constraint

2
E(a_wvxﬁ_wvyﬁ_w) oo
=\ ox dy ot

All gradients approximated with local differences

Iterate; eventually information from regions with
strong gradient infiltrate both

— Into regions with nearly zero gradient
— Across object boundaries

VvyHQ)

2
+

Vv,




Optical flow criterion and gradient
descent

* OF criterion is good only if motion is small.

 When the motion is not small, can iterate
the solution based on the OF criterion to
satisfy the DFD criterion.

» OF criterion can often yield closed-form
solution as the objective function is
quadratic in MVs.

©Yao Wang, 2003
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High-level Framework

Motion representation
Optimization criteria
Optimization strategies

Mix and match

— Pixel-based representation, DFD, gradient descent
— Pixel-based representation, OF, least-square

— Block-based representation, DFD, exhaustive search
— Block-based representation, DFD, hierarchical search

— Global motion
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Deformable Block Matching Algorithm

Partition anchor frame into
regular blocks
Assume flat patch undergoing

rigid 3D motion

d
4
*
. -
’ ’
-----

-
-*
*

“
-t?

Target frame
Approximate using

affine or bilinear motion
Describe using a node-based

Anchor frame m Otl onh mo d e I
From ©Yao Wang, zuus 55




Affine and Bilinear Model

« Affine (6 parameters):
— Good for mapping triangles to triangles

_|arax+ayy
- by +bx+b,y \/
—
« Bilinear (8 parameters):
Q

— Good for mapping blocks to quadrangles
©Yao Wang, 2003 56

d.(x,y)
d,(x,)

d.(x,y)
d,(x,y)

[ao +a; X +a,)y + axy

by + bx +byy + byxy




Representing Deformable Blocks

1. Represent with polynomial coefficients of the model

2. Represent with nodal motion

— Motion vector for each node

— Interpolation kernel for pixels inside node
(kernel depends on the motion model)

dp(X) = Gy, X € By
* Advantages of second representation **
— More efficient communication (polynomial coefficients
need high precision)
— Easier to define both search range and search stepsize
— All parameters are equally important
— All parameters need same degree of precision
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Mesh-Based Motion Estimation

Partition frame into
non-overlapping polygons

Describe using nodal motion
— Motion of the nodes

— Interpolation kernel

(|,,,(X) = Z "'.’m.k':x}(lnc,m.ku- X & bl.m-
k‘;.‘\-

When they move,
nodes must stay in a mesh
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(a)

(c)

Mesh-based vs.
block-based
motion estimation

(a) block-based backward ME

(b) mesh-based backward ME

(c) mesh-based forward ME



Node-Based Motion Model

Control nodes in this
example: Block corners

Motion in other points are
interpolated from the nodal
MVs d,

Control node MVs can be
described with integer or
half-pel accuracy, all have
same importance

Translation, affine, and
bilinear are special case of
this model

©Yao Wang, 2003

dy(x) = E P, k(XD

k=1

X € b,

60



Interpolation Kernels

* Requirement:

0= dmi(x) = 1. Z tmk(x)=1. VxeBn.
k PmplXp) = gy = {
« For standard triangular element:

| k=1
0 k£l

X
Plx.yy=x. Pix.yy=y. @x.y)=1—x—y. 12
* For standard quadrilateral element:
\ @ o,

@ b |
=1 e

dlix.yy=(1+x)(1 —y/4. ¢Jx.y) =(1+x)(1+ y)/4.
@ = o  dx.y)==x11+ w4 ofx.y) =01 —=x)(1—y)/4
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Some details about DBMA

« DBMA: each node has 4 possible MV (each block has 4 MV)

e A practical algorithm:
— First, apply EBMA to all blocks
* Blocks with small EBMA errors have translational motion
* Blocks with large EBMA errors may have non-translational
motion
— Next, apply DBMA to blocks with large EBMA

* Blocks still having large errors are non-motion compensatible

— [Ref] O. Lee and Y. Wang, Motion compensated
prediction using nodal based deformable block
matching. J. Visual Communications and Image
Representation (March 1995), 6:26-34
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target frame
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EBMA vs. Mesh-based Motion Estimation

EBMA (29.86dB)

mesh-based method (29.72dB)



Global Motion Estimation

* Global motion:
— Camera moving over a stationary scene
* Most projected camera motions can be captured by affine mapping

— Assumes the scene moves in its entirety — very rare

— Can decompose scene into several major regions, each moving
differently (region-based motion estimation)

* Determine global motion parameters for all pixels:
— Direct estimation
— Indirect estimation
* Exempt some pixels from the global motion estimation:
— lteratively determine the motion parameters and the set of pixels
— Robust estimator

©Yao Wang, 2003
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Direct Estimation

Parameterize the DFD error in terms of the motion parameters, and
estimate these parameters by minimizing the DFD error

Eprp = Z Wa| U (Xp + d(Xp: 2)) — U (X)) |7

neN
Weighting w,, coefficients depend on the importance of pixel x,.

Ex: Affine motion:
[dx(xn;a)

dy (x,;2) by +byx, +b,y,

Ay +ax, +a,y
0 1*¥n 20n T
=|: :|7 a=[a09a19a27b09b19b2]

Exhaustive search or gradient descent method can be used to find a
that minimizes Epqgp
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Indirect Estimation

« First find the dense motion field using pixel-based or block-based approach
(e.g. EBMA)

« Then parameterize the resulting motion field using the motion model
through least squares fitting

, 2
Eﬁt - E w,(d(x,;a)-d,) Weighting w,, coefficients depend
on the accuracy of estimated
motion at x...

Affine motion :
d(x,;a)=[A,]a,

1 x, y, 00 0
[A,]=
0 0 01 x, vy,

J . o
9a _Ewn[An] ([An]a dn)_()

a=(Sw, A, 1141 (S w,lA,Td,)
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Robust Estimator

Concept: iteratively removing “outlier” pixels.
1. Initialize the region to include all pixels in a frame

2. Apply the direct or indirect method over all
pixels in the region

3. Evaluate errors (Epgp or Eg) at all pixels in the
region
4. Eliminate “outlier” pixels with large errors

5. Repeat steps 2-4 for the remaining pixels in the
region

More detail in Wang, Ostermann, Zhang
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lllustration of Robust Estimator

LMS-estimator g / »r. ‘
outliers — o
Qo ® . o ® ‘/
® o [o]
e o a =)
#|e o
o o
//
* ¥
o o/
o / o '||
0 of Robust-estimator

Fitting a line to the data points by using LMS and robust estimators. Courtesy of Fatih Porikli

©Yao Wang, 2003 69



Region-Based Motion Estimation

« Assumption: the scene consists of multiple objects, with the region
corresponding to each object (or sub-object) having a coherent
motion

— Physically more correct than block-based, mesh-based, global motion
model

* Method:

— Region First: Segment the frame into multiple regions based on texture/
edges, then estimate motion in each region using the global motion
estimation method

— Motion First: Estimate a dense motion field, then segment the motion
field so that motion in each region can be accurately modeled by a
single set of parameters

— Joint region-segmentation and motion estimation: iterate the two
processes
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Summary

e Fundamentals:

— Optical flow equation

e Derived from constant intensity and small motion
assumption

* Ambiguity in motion estimation
— How to represent motion:

* Pixel-based, block-based, region-based, global, etc.
— Estimation criterion:

* DFD (constant intensity)

* OF (constant intensity+small motion)

— Search method:
e Exhaustive search, gradient-descent, multi-resolution

©Yao Wang, 2003
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Summary (Cntd)

» Basic techniques:

— Pixel-based motion estimation

— Block-based motion estimation
« EBMA, integer-pel vs. half-pel accuracy, Fast algorithms

* More advanced techniques

— Multiresolution approach

» Avoid local minima, smooth motion field, reduced computation
— Deformable block matching algorithm (DBMA)

» To allow more complex motion within each block

— Mesh-based motion estimation
» To enforce continuity of motion across block boundaries

— Global motion estimation
» Good for estimating camera motion
— Region-based motion estimation
» More physically correct: allow different motion in each sub-object region
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