Applications of digital video

- Entertainment
- Education
- Interactive communication
- Memorabilia, life-logging
- Medical and Scientific Imaging
- Information extraction
 - Surveillance, scene understanding

Items in blue: FOR humans
Items in red: FOR humans or FOR machines
This course

• Motion models, estimation, and tracking
• Video compression (theory and practice)
• Video transport (error resilience; scalable coding)
• Stereo, 3D video, lightfields and beyond
• Video quality and how we see
• Video enhancement, stabilization
• Scene understanding and video analytics

Items in red: FOR humans or FOR machines

Items in black: FOR machines

Items in blue: FOR humans
Today’s outline 1/12/17

• Video formats
• Sampling the plenoptic function
• Color formats
Plenoptic Function (Adelson ‘91)

- Measures the intensity of light that passes through a particular point in space
- Every possible viewing position, with any viewing angle, at every moment in time
 - 3 location coordinates
 - 2 angular directions
 - Time
 - Wavelength
Image Formation in a Pinhole Camera

• Light enters a darkened chamber through pinhole opening and forms an image on the back surface
Video signal

• What enters through the pinhole and projects on the image plane is a continuous 3-D signal (temporal, horizontal, vertical)
• Film records samples in time but continuous in space (typically 24 frames/sec)
• Analog video samples in time and samples vertically; continuous horizontally (about 30 frames/sec)
 – Number of lines controls the maximum vertical frequency that can be displayed for a given viewing distance
 – Video-raster = 1-D signal consisting of scan lines from successive frames
• Digital video: samples in time, vertically, and horizontally
On sampling temporally

• Several different approaches:
 – Sample entire frame at the exact same time instant
 – Sample in raster scan order (a tracing finger)
 – Rolling shutter
 – Interlace

• We will touch on these more as they become relevant
 – For many applications, the first is a sufficiently accurate approximation
Interlacing

• (Almost) all Standard Definition video is interlaced
Interlaced video

field 0

field 1

field 2

field 3

frame 0

frame 1
Interlaced video
Next up: sampling “angularly”

• On the next slide, each point in the 2D plane is a common format for video
• The diagonal lines indicate different aspect ratio
 – The rectangles are color-coded with the diagonal lines
• The arcs indicate the number of pixels per frame
 – Pixel === “picture element”
From wikipedia.org: “1080p”
Digital formats

- Digital video is a sequence of frames \((x,y,t)\)
- Often denoted \{lines\}{i,p} or \{lines\}{i,p}{fps}
 - 1080i, 720p, 1080p60
- Temporal resolutions
 - Video
 - 25, 30, 60 frames per second (fps)
 - 50, 60, 120 fields per second
 - Film: 24, 48 fps
 - Animation: often lower
- Why use more FPS?
Spatial resolutions

• High-definition TV (HDTV)
 – 1920 x 1080 (1080p or 1080i)
 – 1280 x 720 (720p)

• Standard-definition TV (SDTV or TV)
 – 720 x 480; 480 x 480;
 – D1: 720 x 486, 720 x 576

• Common Intermediate Format (CIF)
 – 352 x 288, 30 frames per second
 – Required for H.261 compression
Spatial resolutions (cont)

• Source Image Format (SIF)
 – 352 x 240; 352 x 288 (various frame rates!)

• Quarter CIF (QCIF)
 – 176 x 120; 176 x 144

• 4CIF
Aspect Ratio

• Picture width relative to picture height
• Display aspect ratios
 – NTSC 4:3
 – HDTV 16:9
• Pixel aspect ratios
 – Computers: square
 – TV: not square
Aspect ratio accommodations: fitting HD into SD, or SD into HD

• Squeeze video to fit
 – Tall skinny people; short wide people
• Letterboxing (Pillarboxing)
 – Fill top and bottom (left and right) with black
• Pan and scan
 – Show only a subset of the full content
 – Change viewing window over time if desired
HDTV formats

• 1080i
 – CBS, NBC
 – Improved spatial resolution

• 720p
 – Fox, ABC, ESPN, A&E, History Channel
 – Improved motion rendition

• Artifacts are prevalent when switching from one to another (if you’re trained to see it)
 – Jagged edges (particularly during motion)
How many bits per pixel?

- Quantization transforms the continuous value at each pixel location into a digital number that can be represented by a fixed number of bits.
- Most video today is 8 bits per pixel (for luminance)
- Emerging High Dynamic Range (HDR) images and video are 10 or 12 or 16 bits per pixel
On sampling the wavelengths (Color)

What color are the central squares?

http://serendip.brynmawr.edu/~laurac/cube/cube.jpg
On sampling the wavelengths (Color)

What color are the central squares?

http://serendip.brynmawr.edu/~laurac/cube/cube.jpg
Colorimetry

- Color itself is a perceptual property
- NOT an attribute of an object, but of how our eyes and our brain perceive it

- We often talk about color of an image in terms of the wavelength of light emitted or reflected from objects in the image
- I’ll use the shortcut “color” here for the latter case
Illuminating and Reflecting Light

• Illuminating sources:
 – emit light (e.g. the sun, light bulb, TV monitors)
 – follows additive rule
 • R+G+B=White

• Reflecting sources:
 – reflect an incoming light (e.g. the color dye, matte surface, cloth)
 – Reflected frequencies are the emitted frequencies minus any absorbed frequencies
 – follows subtractive rule
 • R+G+B=Black
Human Perception of Color

• Retina contains photo receptors
 – Cones: day vision, can perceive color tone
 • Red, green, and blue cones
 • Different cones have different frequency responses
 • Tri-receptor theory of color vision [Young1802]
 – Rods: night vision, perceive brightness only

• Color sensation is characterized by
 – Luminance (perceived brightness)
 – Chrominance (perceived color tone)
 • Hue (color tone or peak wavelength)
 • Saturation (color purity)
Frequency Responses of Cones and the Luminous Efficiency Function
Trichromatic Color Mixing

- Trichromatic color mixing theory
 - Any color can be obtained by mixing three primary colors in the right proportion
 \[C = \sum_{k=1,2,3} T_k C_k, \quad T_k : \text{Tristimulus values} \]

- Primary colors for illuminating sources (i.e., monitors):
 - Red, Green, Blue (RGB)

- Primary colors for reflecting sources (i.e. printed papers)
 - (also known as secondary colors)
 - Cyan, Magenta, Yellow (CMY)
Color Representation Models

• Tristimulus values associated with the three primary colors
 – RGB or CMY

• Amplitude specification:
 – 8 bits for each color component; 24 bits total for each pixel
 – 16 million colors

• Luminance and chrominance
 – HSI (Hue, saturation, intensity)
 – YIQ (used in NTSC color TV)
 – YCbCr (used in digital color TV)
Many color spaces

• Conversion between primary and XYZ/YIQ/YUV are linear (3x3 matrix)

\[
\begin{align*}
Y' &= 0.299 \, R + 0.587 \, G + 0.114 \, B \\
U &= -0.147 \, R - 0.289 \, G + 0.436 \, B \\
V &= 0.615 \, R - 0.515 \, G - 0.100 \, B
\end{align*}
\]

\[
\begin{align*}
U &= 0.436 \, (B-Y')/(1-0.114) \\
V &= 0.615 \, (R-Y')/(1-0.299)
\end{align*}
\]

* For BT.601 and SDTV. Matrix for BT.709 and HDTV differs!
Perceptually uniform color spaces

• Perceptually uniform:
 – A small perturbation to a value is approximately equally perceptible across the range of that value

• XYZ, RGB tristimulus values are not perceptually uniform

• L*u*v* (CIELUV) and L*a*b* (CIELAB) are closer
 – Involves a cube-root
 – Computationally complicated
Choosing color coordinates

- For display or printing: RGB or CMY, to produce more colors
- For analyzing color differences: HSI, for linear relationship.
- For processing perceptually meaningful color: L*a*b*
- For transmission or storage: YIQ or YUV, for a less redundant representation
Color in images and videos and OpenCV

- Images are commonly RGB, and each pixel location has 3 colors
 - (this is ignoring Bayer color sampling)
 - BE CAREFUL!!! OpenCV loads images as BGR

- Videos are commonly YUV or YCbCr, and there are fewer color pixels than luminance pixels
 - OpenCV will automatically convert videos in YUV into consecutive images of RGB, upsampling the color information
Chrominance Subsampling Formats

4:4:4
For every 2x2 Y Pixels
4 Cb & 4 Cr Pixel
(No subsampling)

4:2:2
For every 2x2 Y Pixels
2 Cb & 2 Cr Pixel
(Subsampling by 2:1 horizontally only)

4:1:1
For every 4x1 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 4:1 horizontally only)

4:2:0
For every 2x2 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 2:1 both horizontally and vertically)

○ Y Pixel
△ Cb and Cr Pixel
History
History of TV in US

• 1941: First NTSC broadcast, monochrome
 – 4:3 aspect ratio; Interlacing
 – 60 Hz (60 fields per second)
 – 525 lines but only 480 active lines
• 1953: Color NTSC
 – Backwards compatible with black and white TVs
• 1993: Grand Alliance forms to design HDTV
• 1996: First public broadcast of HDTV
• 2000: First HDTV Superbowl transmission
• 2009: Last analog transmission
NTSC Spectrum Illustration
Analog video

• NTSC (North America + Japan)
 – 59.95 fields per second; 525 lines; YIQ
• PAL (most of Western Europe, India, Australia)
 – 50 fields per second; 625 lines; YUV
• SECAM (most of the rest of Asia; eastern Europe)
 – 50 fields per second; 625 lines; YDbDr
Progressive Scanning

- Progressive scan:
 - Captures consecutive lines
 - Captures a complete frame every Δt sec
 - Also referred to as sequential or non-interlaced
 - Used by computers
Interlaced Scanning

- Interlaced scan:
 - Captures alternate lines (each frame split into two fields)
 - Odd lines are captured (odd field), then even lines (even field)
 - Captures a complete frame every Δt sec
 - Used in analog television
Why interlaced?

• Provides a trade-off between temporal and vertical resolution, for a given, fixed data rate
Hold overs from analog video

• Temporal scanning: Interlace and progressive
• Digital video standards included capability for interlace – up until H.265 (High Efficiency Video Coding HEVC)

• Different spatial samplings: NTSC and PAL
 – 525 lines at 30 fps; or 625 lines at 25 fps
Spatial resolutions (revisited)

- Common Intermediate Format (CIF)
 - 352 x 288, 30 frames per second
 - Required for H.261 compression
- Source Image Format (SIF)
 - 352 x 240; 352 x 288 (various frame rates!)
- Quarter CIF (QCIF)
 - 176 x 120; 176 x 144
- 4CIF
BT.601* Video Format

Digital encoding of analog video

525/60: 60 field/s

625/50: 50 field/s

* BT.601 is formerly known as CCIR601

© Yao Wang, 2004 Video Basics 43
Over the air HDTV in US

- Flexible picture formats
- Progressive scan or interlace scan
- Video compression based on MPEG-2
Digital Video Formats

<table>
<thead>
<tr>
<th>Video Format</th>
<th>Y Size</th>
<th>Color Sampling</th>
<th>Frame Rate (Hz)</th>
<th>Raw Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTV Over air. cable, satellite, MPEG2 video, 20-45 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMPTE296M</td>
<td>1280x720</td>
<td>4:2:0</td>
<td>24P/30P/60P</td>
<td>265/332/664</td>
</tr>
<tr>
<td>SMPTE295M</td>
<td>1920x1080</td>
<td>4:2:0</td>
<td>24P/30P/60I</td>
<td>597/746/746</td>
</tr>
<tr>
<td>Video production, MPEG2, 15-50 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT.601</td>
<td>720x480/576</td>
<td>4:4:4</td>
<td>60I/50I</td>
<td>249</td>
</tr>
<tr>
<td>BT.601</td>
<td>720x480/576</td>
<td>4:2:2</td>
<td>60I/50I</td>
<td>166</td>
</tr>
<tr>
<td>High quality video distribution (DVD, SDTV), MPEG2, 4-10 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT.601</td>
<td>720x480/576</td>
<td>4:2:0</td>
<td>60I/50I</td>
<td>124</td>
</tr>
<tr>
<td>Intermediate quality video distribution (VCD, WWW), MPEG1, 1.5 Mbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIF</td>
<td>352x240/288</td>
<td>4:2:0</td>
<td>30P/25P</td>
<td>30</td>
</tr>
<tr>
<td>Video conferencing over ISDN/Internet, H.261/H.263, 128-384 Kbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIF</td>
<td>352x288</td>
<td>4:2:0</td>
<td>30P</td>
<td>37</td>
</tr>
<tr>
<td>Video telephony over wired/wireless modem, H.263, 20-64 Kbps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCIF</td>
<td>176x144</td>
<td>4:2:0</td>
<td>30P</td>
<td>9.1</td>
</tr>
</tbody>
</table>