ECE 634: Digital Video Systems Formats: 1/12/17

Professor Amy Reibman MSEE 356

reibman@purdue.edu

http://engineering.purdue.edu/~reibman/ece634/index.html

Applications of digital video

- Entertainment
- Education
- Interactive communication
- Memorabilia, life-logging

Items in red: FOR humans or FOR machines

Items in blue: FOR humans

- Medical and Scientific Imaging
- Information extraction
 - Surveillance, scene understanding

Items in black: FOR machines

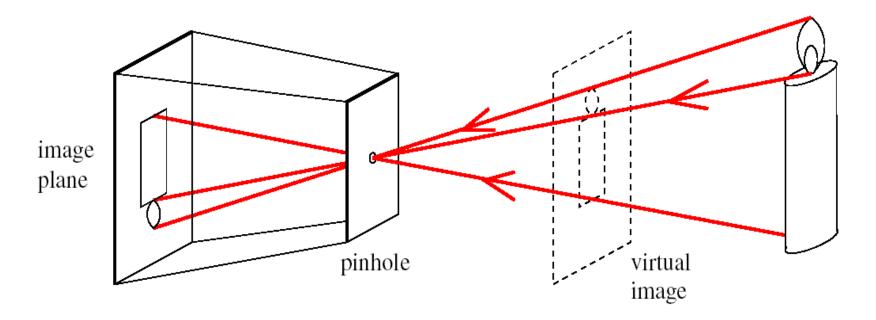
This course

- Motion models, estimation, and tracking
- Video compression (theory and practice)
- Video transport (error resilience; scalable coding)
- Stereo, 3D video, lightfields and beyond
- Video quality and how we see

Items in blue: FOR humans

- Video enhancement, stabilization
- Scene understanding and video analytics

Today's outline 1/12/17


- Video formats
- Sampling the plenoptic function
- Color formats

Plenoptic Function (Adelson '91)

- Measures the intensity of light that passes through a particular point in space
- Every possible viewing position, with any viewing angle, at every moment in time
 - 3 location coordinates
 - 2 angular directions
 - Time
 - Wavelength

Image Formation in a Pinhole Camera

 Light enters a darkened chamber through pinhole opening and forms an image on the back surface

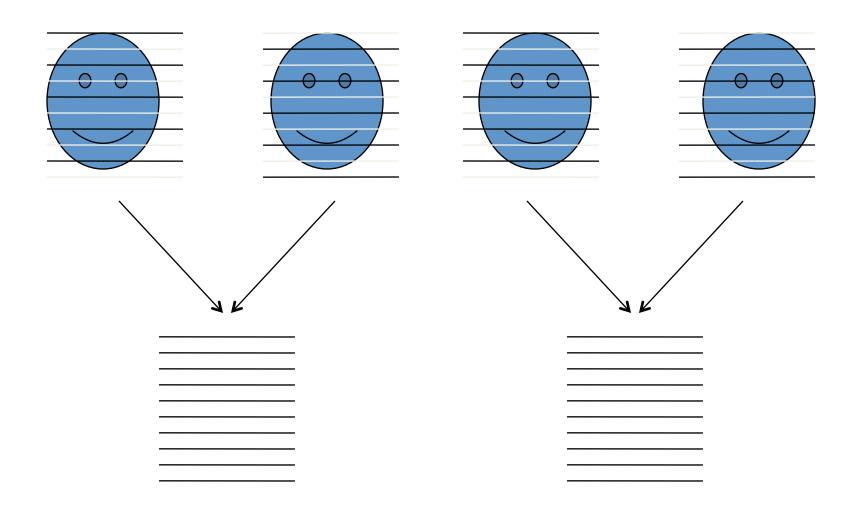
Video signal

- What enters through the pinhole and projects on the image plane is a continuous 3-D signal (temporal, horizontal, vertical)
- Film records samples in time but continuous in space (typically 24 frames/sec)
- Analog video samples in time and samples vertically; continuous horizontally (about 30 frames/sec)
 - Number of lines controls the maximum vertical frequency that can be displayed for a given viewing distance
 - <u>Video-raster</u> = 1-D signal consisting of scan lines from successive frames
- Digital video: samples in time, vertically, and horizontally

On sampling temporally

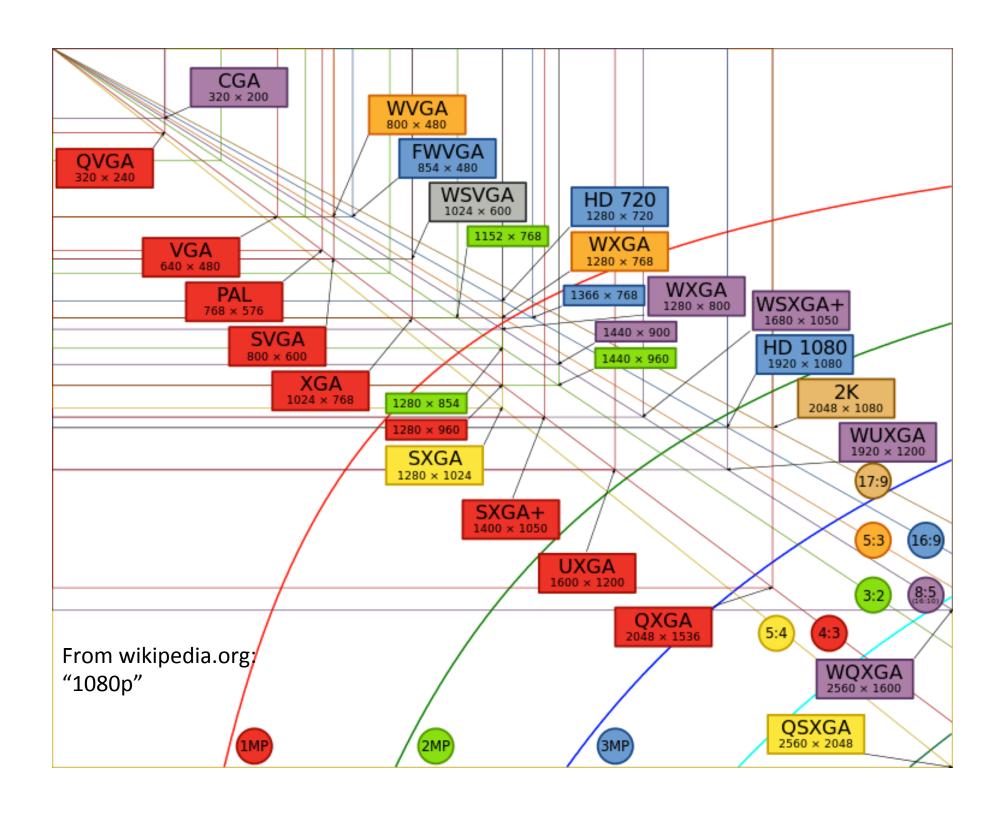
- Several different approaches:
 - Sample entire frame at the exact same time instant
 - Sample in raster scan order (a tracing finger)
 - Rolling shutter
 - Interlace
- We will touch on these more as they become relevant
 - For many applications, the first is a sufficiently accurate approximation

Interlacing


•	(Almost) al interlaced	Stand	ard Def	inition	video is

Interlaced video

field 0	field 1	field 2	field 3
7			7 6


frame 0 frame 1

Interlaced video

Next up: sampling "angularly"

- On the next slide, each point in the 2D plane is a common format for video
- The diagonal lines indicate different aspect ratio
 - The rectangles are color-coded with the diagonal lines
- The arcs indicate the number of pixels per frame
 - Pixel === "picture element"

Digital formats

- Digital video is a sequence of frames (x,y,t)
- Often denoted {lines}{i,p} or {lines}{i,p}{fps}
 - 1080i, 720p, 1080p60
- Temporal resolutions
 - Video
 - 25, 30, 60 frames per second (fps)
 - 50, 60, 120 fields per second
 - Film: 24, 48 fps
 - Animation: often lower
- Why use more FPS?

Spatial resolutions

- High-definition TV (HDTV)
 - 1920 x 1080 (1080p or 1080i)
 - 1280 x 720 (720p)
- Standard-definition TV (SDTV or TV)
 - 720 x 480; 480 x 480;
 - D1: 720 x 486, 720 x 576
- Common Intermediate Format (CIF)
 - 352 x 288, 30 frames per second
 - Required for H.261 compression

Spatial resolutions (cont)

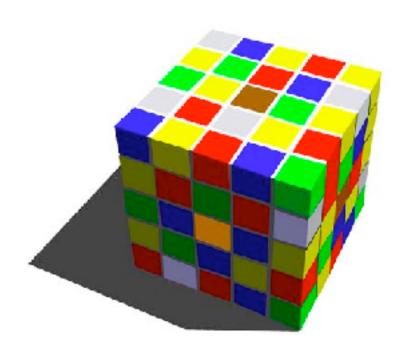
- Source Image Format (SIF)
 - 352 x 240; 352 x 288 (various frame rates!)
- Quarter CIF (QCIF)
 - 176 x 120; 176 x 144
- 4CIF

Aspect Ratio

- Picture width relative to picture height
- Display aspect ratios
 - NTSC 4:3
 - HDTV 16:9
- Pixel aspect ratios
 - Computers: square
 - TV: not square

Aspect ratio accommodations: fitting HD into SD, or SD into HD

- Squeeze video to fit
 - Tall skinny people; short wide people
- Letterboxing (Pillarboxing)
 - Fill top and bottom (left and right) with black
- Pan and scan
 - Show only a subset of the full content
 - Change viewing window over time if desired


HDTV formats

- 1080i
 - CBS, NBC
 - Improved spatial resolution
- 720p
 - Fox, ABC, ESPN, A&E, History Channel
 - Improved motion rendition
- Artifacts are prevalent when switching from one to another (if you're trained to see it)
 - Jagged edges (particularly during motion)

How many bits per pixel?

- Quantization transforms the continuous value at each pixel location into a digital number that can be represented by a fixed number of bits.
- Most video today is 8 bits per pixel (for luminance)
- Emerging High Dynamic Range (HDR) images and video are 10 or 12 or 16 bits per pixel

On sampling the wavelengths (Color)

What color are the central squares?

http://serendip.brynmawr.edu/~laurac/cube/cube.jpg

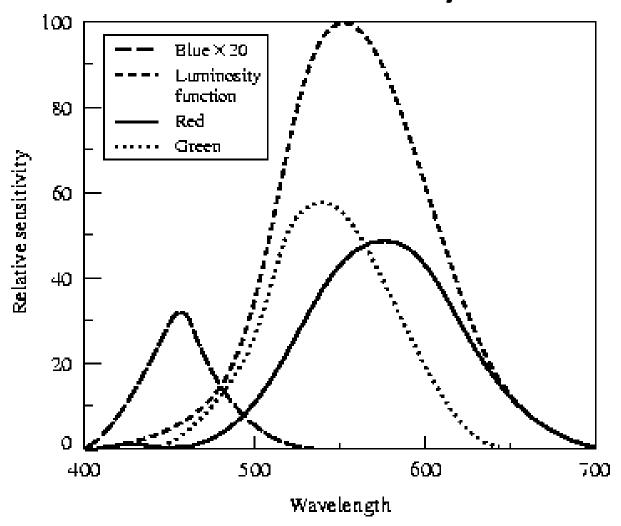
On sampling the wavelengths (Color)

What color are the central squares?

http://serendip.brynmawr.edu/~laurac/cube/cube.jpg

Colorimetry

- Color itself is a perceptual property
- NOT an attribute of an object, but of how our eyes and our brain perceive it
- We often talk about color of an image in terms of the wavelength of light emitted or reflected from objects in the image
- I'll use the shortcut "color" here for the latter case


Illuminating and Reflecting Light

- Illuminating sources:
 - emit light (e.g. the sun, light bulb, TV monitors)
 - follows additive rule
 - R+G+B=White
- Reflecting sources:
 - reflect an incoming light (e.g. the color dye, matte surface, cloth)
 - Reflected frequencies are the emitted frequencies minus any absorbed frequencies
 - follows subtractive rule
 - R+G+B=Black

Human Perception of Color

- Retina contains photo receptors
 - Cones: day vision, can perceive color tone
 - Red, green, and blue cones
 - Different cones have different frequency responses
 - Tri-receptor theory of color vision [Young1802]
 - Rods: night vision, perceive brightness only
- Color sensation is characterized by
 - Luminance (perceived brightness)
 - Chrominance (perceived color tone)
 - Hue (color tone or peak wavelength)
 - Saturation (color purity)

Frequency Responses of Cones and the Luminous Efficiency Function

Trichromatic Color Mixing

- Trichromatic color mixing theory
 - Any color can be obtained by mixing three primary colors in the right proportion

$$C = \sum_{k=1,2,3} T_k C_k$$
, T_k : Tristimulus values

- Primary colors for illuminating sources (i.e., monitors):
 - Red, Green, Blue (RGB)
- Primary colors for reflecting sources (i.e. printed papers)
 - (also known as secondary colors)
 - Cyan, Magenta, Yellow (CMY)

Color Representation Models

- Tristimulus values associated with the three primary colors
 - RGB or CMY
- Amplitude specification:
 - 8 bits for each color component; 24 bits total for each pixel
 - 16 million colors
- Luminance and chrominance
 - HSI (Hue, saturation, intensity)
 - YIQ (used in NTSC color TV)
 - YCbCr (used in digital color TV)

Many color spaces

 Conversion between primary and XYZ/ YIQ/YUV are linear (3x3 matrix)

$$Y' = 0.299 R + 0.587 G + 0.114 B$$

 $U = -0.147 R - 0.289 G + 0.436 B$
 $V = 0.615 R - 0.515 G - 0.100 B$

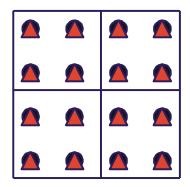
$$U = 0.436 (B-Y')/(1-0.114)$$

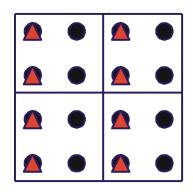
 $V = 0.615 (R-Y')/(1-0.299)$

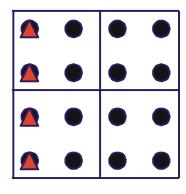
^{*} For BT.601 and SDTV. Matrix for BT.709 and HDTV differs!

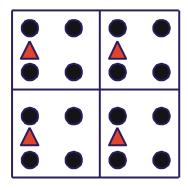
Perceptually uniform color spaces

- Perceptually uniform:
 - A small perturbation to a value is approximately equally perceptible across the range of that value
- XYZ, RGB tristimulus values are not perceptually uniform
- L*u*v* (CIELUV) and L*a*b* (CIELAB) are closer
 - Involves a cube-root
 - Computationally complicated


Choosing color coordinates


- For display or printing: RGB or CMY, to produce more colors
- For analyzing color differences: HSI, for linear relationship.
- For processing perceptually meaningful color:
 L*a*b*
- For transmission or storage: YIQ or YUV, for a less redundant representation


Color in images and videos and OpenCV


- Images are commonly RGB, and each pixel location has 3 colors
 - (this is ignoring Bayer color sampling)
 - BE CAREFUL!!! OpenCV loads images as BGR
- Videos are commonly YUV or YCbCr, and there are fewer color pixels than luminance pixels
 - OpenCV will automatically convert videos in YUV into consecutive images of RGB, upsampling the color information

Chrominance Subsampling Formats

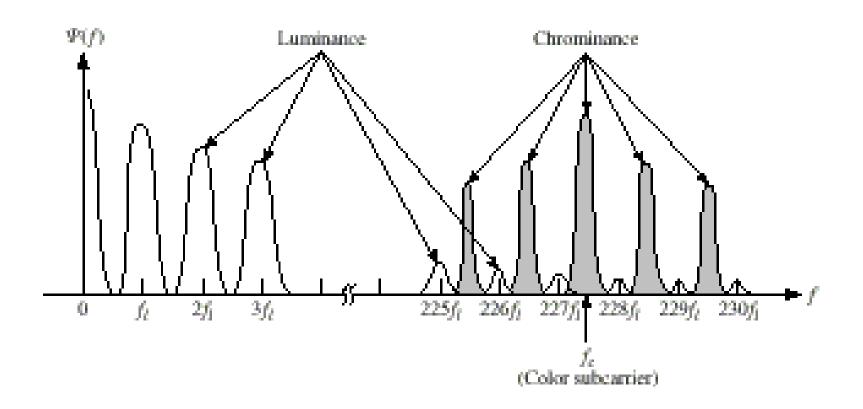
4:4:4
For every 2x2 Y Pixels
4 Cb & 4 Cr Pixel
(No subsampling)

4:2:2
For every 2x2 Y Pixels
2 Cb & 2 Cr Pixel
(Subsampling by 2:1
horizontally only)

4:1:1
For every 4x1 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 4:1
horizontally only)

4:2:0
For every 2x2 Y Pixels
1 Cb & 1 Cr Pixel
(Subsampling by 2:1 both
horizontally and vertically)

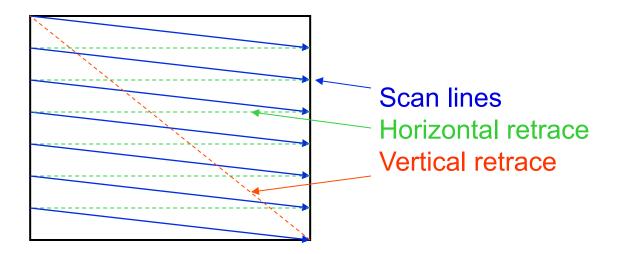
Y Pixel


Cb and Cr Pixel

History

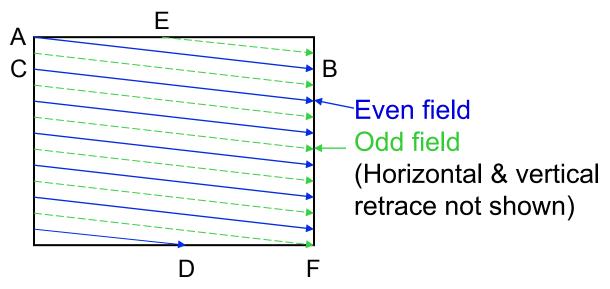
History of TV in US

- 1941: First NTSC broadcast, monochrome
 - 4:3 aspect ratio; Interlacing
 - 60 Hz (60 fields per second)
 - 525 lines but only 480 active lines
- 1953: Color NTSC
 - Backwards compatible with black and white TVs
- 1993: Grand Alliance forms to design HDTV
- 1996: First public broadcast of HDTV
- 2000: First HDTV Superbowl transmission
- 2009: Last analog transmission


NTSC Spectrum Illustration

Analog video

- NTSC (North America + Japan)
 - 59.95 fields per second; 525 lines; YIQ
- PAL (most of Western Europe, India, Australia)
 - 50 fields per second; 625 lines; YUV
- SECAM (most of the rest of Asia; eastern Europe)
 - 50 fields per second; 625 lines; YDbDr


Progressive Scanning

Progressive scan:

- Captures consecutive lines
- Captures a complete frame every Δt sec
- Also referred to as sequential or non-interlaced
- Used by computers

Interlaced Scanning

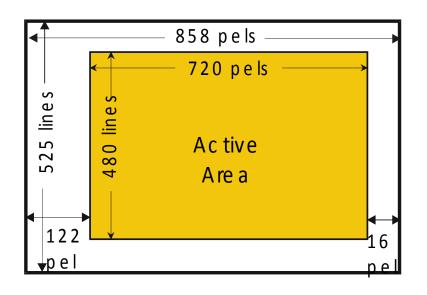
- Interlaced scan:
 - Captures alternate lines (each frame split into two fields)
 - Odd lines are captured (odd field), then even lines (even field)
 - Captures a complete frame every Δt sec
 - Used in analog television

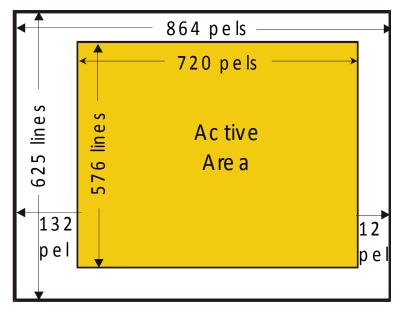
Why interlaced?

 Provides a trade-off between temporal and vertical resolution, for a given, fixed data rate

Hold overs from analog video

- Temporal scanning: Interlace and progressive
- Digital video standards included capability for interlace – up until H.265 (High Efficiency Video Coding HEVC)


- Different spatial samplings: NTSC and PAL
 - 525 lines at 30 fps; or 625 lines at 25 fps


Spatial resolutions (revisited)

- Common Intermediate Format (CIF)
 - 352 x 288, 30 frames per second
 - Required for H.261 compression
- Source Image Format (SIF)
 - 352 x 240; 352 x 288 (various frame rates!)
- Quarter CIF (QCIF)
 - 176 x 120; 176 x 144
- 4CIF

BT.601* Video Format

Digital encoding of analog video

525/60: 60 field/s

625/50: 50 field/s

* BT.601 is formerly known as CCIR601

Over the air HDTV in US

- Flexible picture formats
- Progressive scan or interlace scan
- Video compression based on MPEG-2

Digital Video Formats

Video Format	Y Size	Color Sampling	Frame Rate (Hz)	Raw Data Rate (Mbps)					
HDTV Over air. cable, satellite, MPEG2 video, 20-45 Mbps									
SMPTE296M	1280x720	4:2:0	24P/30P/60P	265/332/664					
SMPTE295M	1920x1080	4:2:0	24P/30P/60I	597/746/746					
Video production, MPEG2, 15-50 Mbps									
BT.601	720x480/576	4:4:4	60I/50I	249					
BT.601	720x480/576	4:2:2	60I/50I	166					
High quality video distribution (DVD, SDTV), MPEG2, 4-10 Mbps BT.601 720x480/576 4:2:0 60I/50I 124									
Intermediate quality SIF	y video distribution (V 352x240/288	VCD, WWW), MPEG 4:2:0	1, 1.5 Mbps 30P/25P	30					
Video conferencing over ISDN/Internet, H.261/H.263, 128-384 Kbps CIF 352x288 4:2:0 30P 37									
Video telephony over wired/wireless modem, H.263, 20-64 Kbps QCIF 176x144 4:2:0 30P 9.1									