ECE 634: Digital Video Systems Scalable coding: 3/23/17

Professor Amy Reibman MSEE 356

reibman@purdue.edu

http://engineering.purdue.edu/~reibman/ece634/index.html

Scalability Outline

- Introduction: Heterogeneous clients
 - Simulcast
 - Transcoding
 - Scalability
- Definition of scalability
- Four (or more) types of scalability
- Evolution of the standards

Heterogeneity

- Many heterogeneous clients
 - Different bandwidth requirements
 - Different decoding complexity and power constraints
 - Different screen sizes
- Heterogeneous networks
 - Different rates on different networks
 - Mobile phone
 - Corporate LAN
 - Dynamically varying rates
 - Congestion in the network
 - Distance to base station

Simulcast and Transcoding

Simulcast

- Compress video once for each client capability
- To support a range of possible clients requires bandwidth for storage/transmission at each possible rate

Transcoding

- Compress video once; reduce bit-rate based on client capability
- Simplest scenario: decode and re-encode
- Also possible to reduce complexity by careful design; however, it almost always involves more than VLC
- To support a range of possible clients requires transcoding to each possible rate

Scalable Video Coding

- Definition
 - Ability to recover acceptable image/video by decoding only parts of the bitstream
- Ideal goal is an embedded bitstream
 - Truncate at any arbitrary rate
- Practical video coder
 - Layered coder: base layer provides basic quality, successive layers refine the quality incrementally
 - Fine granularity (FGS)
- To be useful, a scalable solution needs to be more efficient than Simulcast or Transcoding

Functionality provided by Scalability

- Graceful degradation if the less important parts of the bitstream are not decoded (lost, discarded)
- Bit-rate adaptation to match the channel throughput
- Format adaptation for backwards compatible extensions
- Power adaptation for a trade-off between decoding time and quality
- Avoiding loss of important units due to congestion
- Overall error robustness

Considerations for scalability

- Compression efficiency
- Decoder complexity
- Resilience to losses
- Flexible partitioning for rate adaptation
 - Range of rate partitioning (ratio of base rate to total rate)
 - Number of partitions (finely granular, or a few discrete levels)
- Compatibility with standards
- Ease of prioritization
- Prediction structure and method of partitioning controls most of these!

Scalability partitioning methods

- Temporal scalability (frame rate)
- Spatial scalability (picture size)
- Fidelity/SNR/Amplitude/Quality scalability
- Frequency scalability (transform coefficients)
- Object-based or ROI scalability (content)

Illustration of Scalable Coding

6.5 kbps

21.6 kbps

133.9 kbps

436.3 kbps

Quality (SNR) scalability

MPEG-1,2,4, H.263 Temporal Scalability

H.264: Temporal Scalability with Hierarchical prediction

ARReibman, 2011 Scalable video coding 11

Temporal Scalability with Hierarchical B pictures

Temporal Scalability with Hierarchical prediction and Zero delay

Comments about Temporal Scalability

- MPEG-1, MPEG-2, MPEG-4, and H.263+ all had capability for Temporal scalability through Bframes
 - These all require added delay at encoder/decoder
- H.264 added flexible temporal prediction, enabling more flexible temporal scalability
 - This can be implemented with or without added delay

Efficiency H.264 Temporal Scalability

Spatial Scalability

Spatial Scalability Through Down/Up Sampling

17

SNR Scalability

- SNR (or quality, or fidelity, or amplitude) scalability is just spatial scalability where each layer has the same spatial resolution
- Quality in each layer differs because of the quantization level
- Only the base layer can do intra-coding
- Enhancement layer(s) code the residual (between original and lower layer)

Quality (SNR) Scalability By Multistage Stage Quantization (just one approach)

Multi-Stage Quantization

Bitplane coding

 Special case of multistage quantization, where successive step sizes differ by a factor of 2

Prediction structures for scalability (1 and 2)

Enhancement layer is predicted only from same frame in base layer

MPEG-2 Spatial Scalability (1)
MPEG-4 FGS
VERY INEFFICIENT!!
No drift in base layer

Enhancement layer is used to predict base layer

MPEG-2 SNR scalability
Errors propagate into base layer
Scalable video coding Efficient enhancement layer
22

Prediction strategies

- Predict from the base layer only:
 - Can be implemented with bit plane coding (MPEG4 FGS)
 - No mismatch at decoder
 - Low prediction accuracy if the base layer use large Q
- Predict from the current layer:
 - Mismatch at decoder receiving only lower layers!
 - When the prediction requires unavailable information, this is called "drift"

Allow both intra-layer and inter-layer prediction

- Inter-layer prediction
 - Predict from the lower layer (higher Q), quantize the error using lower Q (same as before)
- Intra-layer prediction
 - Predict from previous frame (or previous blocks of the current frame) of the current layer (lower Q), quantize the error using the same lower Q
- Choose which ever is better in RD sense (H.264/ SVC quality scalability)

Prediction structures for scalability (3 and 4)

2-loop control Both base and enhancement layers use their own prediction loop

MPEG-2 Spatial Scalability (2) No drift in base layer

Adaptive prediction

Base: hierarchical temporal prediction Enhance: non-key frames predict using enhancement; key frames from key frames

H.264 scalability

High complexity; reasonably efficient Single-loop decoder; low complexity 25

Inefficiency of predicting only from the base layer (MPEG-4 FGS)

Each blue curve is obtained with MPEG4 FGS using different base-layer rate

Example: Simulcast vs. FG Scalability

- Assume minimum sustainable throughput
 - 128 kbps
- Assume known maximum possible throughput
 - 1024 kbps
- Assume equally probable rates between min and max
- Choose 3 rates for storing simulcast one-layer video
 - Switch between different one-layer videos depending on channel rate
 - Rate of all 3 videos must sum to 1024 kbps
- Compare average video quality of one-layer videos to average video quality of Fine-Grained Scalability

One-layer(s) vs. FG Scalability

SNR scalability: Before H.264 SVC

SNR scalability: with H.264 SVC

Frequency scalability (also called Data Partitioning)

- Base layer: low frequencies of DCT
- Enhancement layer: remaining high frequencies of DCT
- Standardized in MPEG-2
- A breakpoint included in the bitstream made it very easy to partition
- One encoder prediction loop → missing the high frequencies means strong drift

Frequency scalability: Effect of lost information

Two blocks at encoder:

Two blocks at decoder:

- Errors from previous frame propagate into current frame
- Motion causes error to spread, not just spatially, but in frequency
- Prediction method affects degree of propagation

MPEG-2 Scalability: First standard that offers scalability

- Data partition
 - All headers, MVs, first few DCT coefficients in the base layer
 - Can be implemented at the bit stream level
 - Simple
- SNR scalability
 - Base layer includes coarsely quantized DCT coefficients
 - Enhancement layer further quantizes the base layer quantization error
 - Relatively simple
- Spatial scalability
 - Complex
- Temporal scalability
 - Simple; two layers only
- Drift problem:
 - If the encoder's base layer information for a current frame depends on the enhancement layer information for a previous frame
 - Exist in the data partition and SNR scalability modes

MPEG-2 SNR Scalability Encoder

©Yao Wang, 2006 Scalable video coding 34

MPEG-2 Spatial Scalability Codec

Fine Granularity Scalability in MPEG-4

- MPEG-4 achieves fine granularity quality scalability through bit-plane coding
 - The DCT coefficients are represented losslessly in binary bits
 - The bit planes are coded successively, from the most significant bit to the least.
 - The bit plane within each block is coded using runlength coding.
- Temporal scalability is accomplished by combining I, B, and P-frames
- Spatial scalability is achieved by spatial down/up sampling

Fine-Grained Scalability encoder

Encode once, decode to any bandwidth

H.264 SVC (Scalable Video Coding)

- An optimized H.264 SVC encoder has an average overhead bit-rate of about 11% **
- A good trade-off between efficiency and errorpropagation/drift
- Complexity is similar to single-layer H.264 decoding
- Uses only a single motion-compensation loop at the decoder
- Predicts not only residual (DCT) information, but also predict motion information and macroblock modes
- **Compared to a H.264 base profile without CABAC

Scalable HEVC

- High level syntax common to SHVC, MVHEVC, and future extensions, in Annex F of HEVC
- SHVC decoder and conformance requirements in Annex H of HEVC
- Test Model (encoder) for SHVC
- Interlayer SHVC allows any parameter changed
 - Spatial resolution, bit depth, color gamut
 - Texture resampling, motion-field resampling, color mapping

Scalable Video Coding Using Wavelet Transforms

- Wavelet-based image coding:
 - Full frame image transform (as opposed to block-based transform)
 - Bit plane coding of the transform coefficients can lead to embedded bitstreams
 - $EZW \rightarrow SPIHT \rightarrow JPEG2000$
- Wavelet-based video coding
 - Temporal filtering with and without motion compensation
 - Using MC limits the range of scalability
 - Can achieve temporal, spatial, and quality scalability simultaneously
 - Still an active research activity!?

Additional Reading

- Wang, Ostermann, Zhang "Video Processing and Communications": Sec. 11.1, 11.2, 11.3
- R. Aravind, M. R. Civanlar, and A. R. Reibman, "Packet loss resilience of MPEG-2 scalable video coding algorithms", *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 6, no. 5, pp. 426-435, October 1996.
- H. Schwarz, D. Marpe, T. Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard", IEEE Trans. CSVT, September 2007 http://iphome.hhi.de/wiegand/assets/pdfs/DIC_SVC_07.pdf