Power Spectral Density function (PSD) (chapter 10.1)
Definition: If XIt) is a WSS RP w/ RxIt)
then the Power Spectral density of XIt) is

$$S_x(f) = \int_{-\infty}^{\infty} R_x It) e^{-j2\pi ft} dT$$

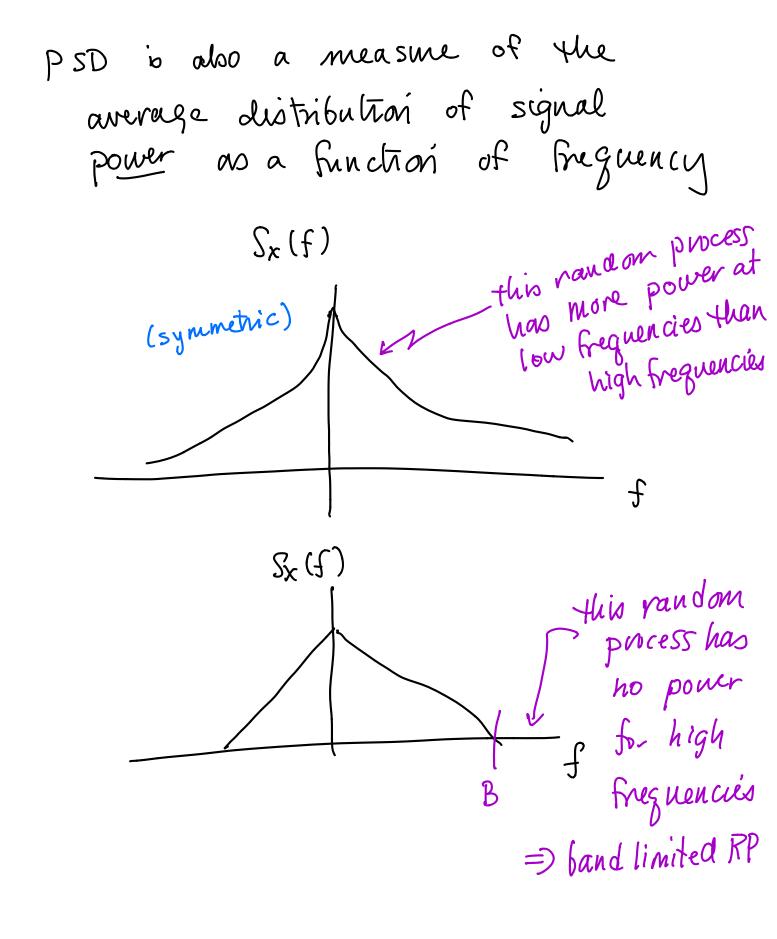
the Fourier Transform of the autocorrelation
A measure of the average distribution of signal power
as a function of frequency.
It is only defined for wSS RPS
Examples RxIt) $S_x(f)$
white is a function of $RxIt$ f
cosine $a^2 = \frac{a^2 \cos wT}{z}$
 $\frac{a^3/4}{1}$ f
 $\frac{a^2/9}{T}$ $\frac{f}{R}(A^2)$
Reconstant $E(A^2)$
 $RE(A^2)$
 $RE(A^2)$

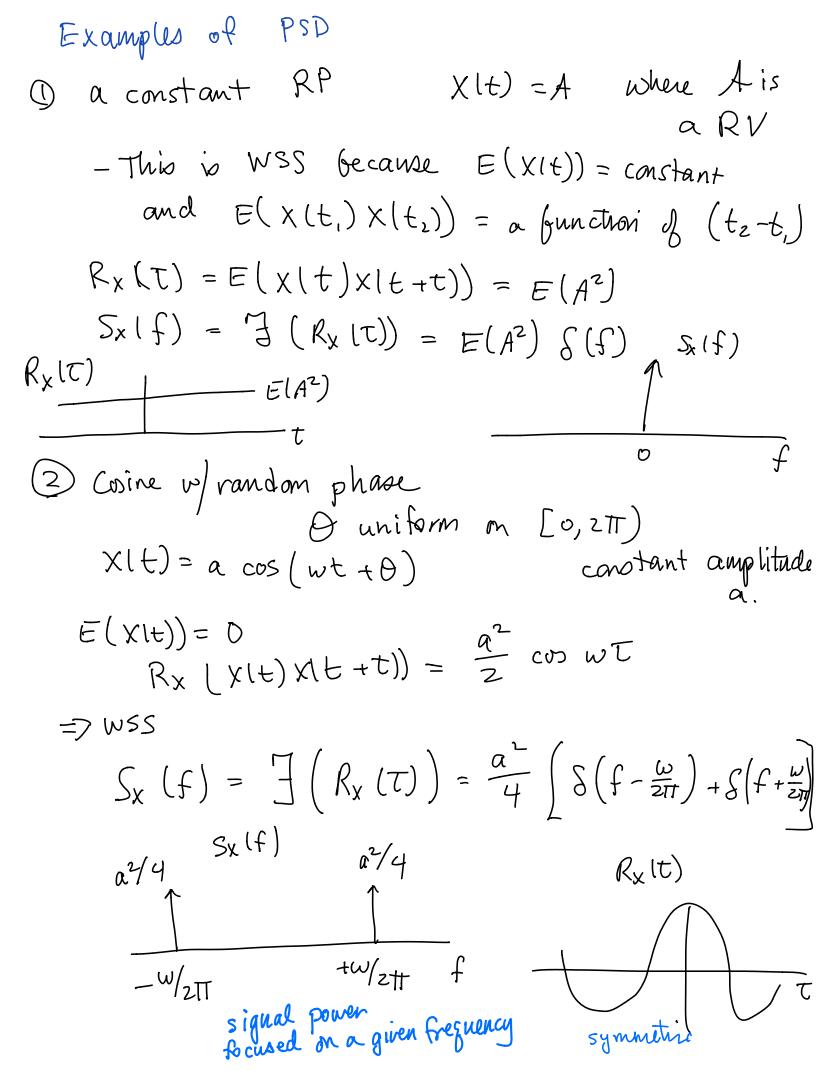
Intuition and power spectral density function

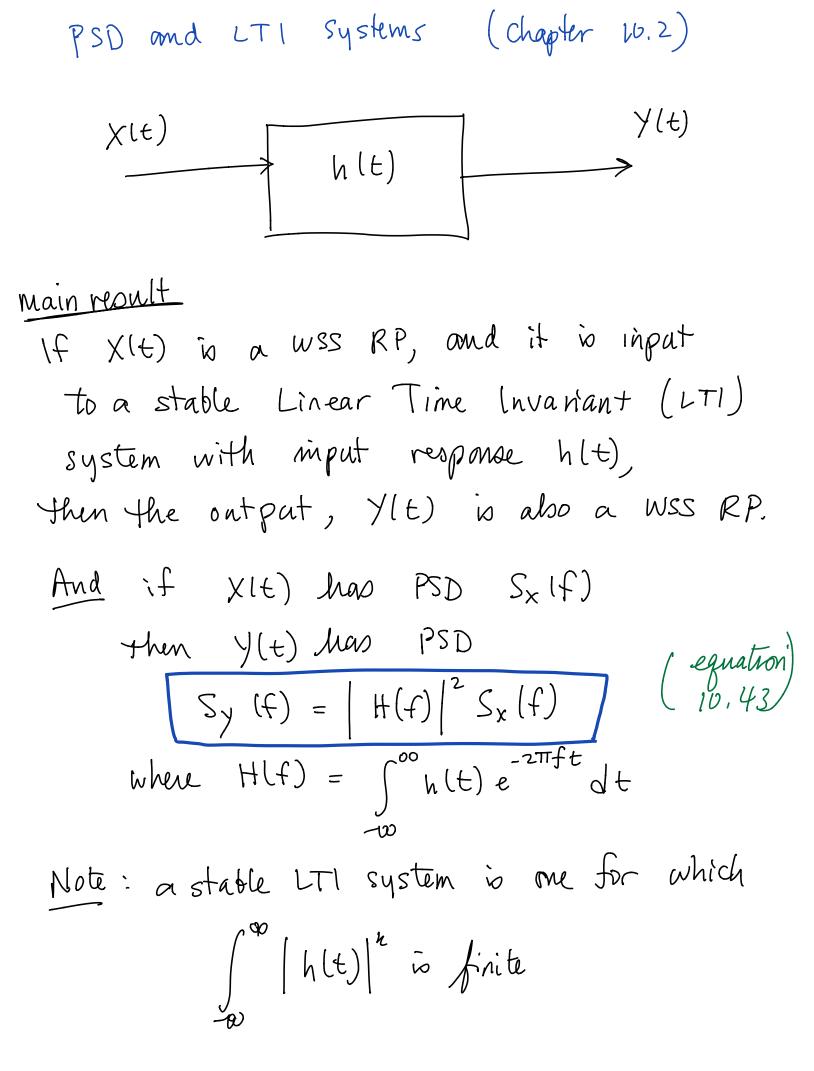
$$S_{x}(f) = \int_{-\infty}^{\infty} R_{x}(\tau) e^{-j2\pi f \tau} d\tau$$

- () PSD is just auto-correlation in another form, so it's a different way to represent the same thing
- Sometimes we can get more insight from one form than another. But intuition can be obtained from either

Properties of PSD.
()
$$S_{X}(f)$$
 is a real function
(because $R_{X}(t)$ is even symmetric)
(2) $R_{X}(t) = \int_{-\infty}^{\infty} S_{X}(f) e^{j2\Pi ft} df$
(3) Cannot compute $S_{X}(f)$ nulless $X(t)$ is WSS
(4) $S_{X}(f) \ge 0$ always
(5) $Average$ power
 $E[X^{2}(t)] = R_{X}(o) = \int_{-\infty}^{\infty} S_{X}(f) df$
computed by integrating
the PSD over all frequencies
(which is consistent with the notion
of a "power spectral density"
 $S_{X}(f)$
 f $average power
 f $\int_{-\infty}^{\infty} S_{X}(f) df$$







Example X(t) is WSS RP

$$m_{X} = 10 \text{ volts} = E(x(t))$$
LTI impulse response

$$h(t) = \begin{cases} exp(t/0.2) & odd down of the edge of$$

Proof:
$$Y(t) = h(t) * X(t)$$

of wss $d_{y(t)} = \int_{0}^{\infty} h(t) X(t-\tau_{1}) d\tau_{1}$
wire going to have $-\infty$
trouble w| τ notations, so let more τ for the
auto correlation, and τ , and for τ_{2} for convolution
To Show wss, need
(D my (t)) = constant
 $E(Y(t)) = E\left[\int_{-\infty}^{\infty} h(\tau_{1}) X(t-\tau_{1}) d\tau_{1}\right]$
 $= \int_{0}^{\infty} h(\tau_{1}) E(X(t-\tau_{1})) d\tau_{1}$
 $yhis is a constant,$
not dependent in
 t or τ_{1} since
 $= M_{X} \int_{0}^{\infty} h(\tau_{1}) d\tau_{1}$
 $X is Wss$
 $= m_{Y} \implies a constant not dependent
 $m_{Y} = m_{Y} H(0)$
 $yhis a scaled
 $yhis a scaled$
 $yhis a scaled yhis mean$$$$$$$

Also need
$$R_{y}(t, t+T)$$
 to be depend only
on T , not t .

$$E(Y(t) Y(t+T))$$

$$= E\left(\left(\int_{-\infty}^{\infty} h(T_{1}) \times (t-T_{1}) dT_{1} \right) \left(\int_{0}^{\infty} h(T_{2}) \times (t+T-T_{2}) dT_{2} \right) dT_{1} dT_{2} \right)$$

$$= E\left(\int_{-\infty}^{\infty} \int_{0}^{\infty} h(T_{1}) h(T_{2}) \times (t-T_{1}) \times (t+T-T_{2}) dT_{1} dT_{2} \right) dT_{1} dT_{2} dT_{2} dT_{2} dT_{3} dT_{4} dT_$$

this depends on T, but not on t, so Y(t) is WSS

Pover Spectral Density of Y(t) $Sy(f) = \int_{0}^{\infty} Ry(t) e^{-j2\pi f \tau} d\tau$ $= \iint \left(\int h(\tau_1) h(\tau_2) R_X (\tau - \tau_1 + \tau_2) e^{-j2\pi f \tau} \right)$ (from previous pape) dt, dtz dt $= \iint h(\tau_{1}) h(\tau_{2}) R_{x}(\tau') e^{-j2\pi f(\tau'+\tau_{1}-\tau_{2})}$ dT, dtzdt (using a change of variables of $T' = T - T, + T_Z$ dT' = dTThis triple integral is now separable $= \left(\int h|t_{i}\rangle e^{-j2\pi f t_{i}} dt_{i} \right) \left(\int h|t_{z}\rangle e^{-j2\pi f t_{z}} dt_{z} \right)$ $= \left(\int h|t_{i}\rangle e^{-j2\pi f t_{i}} dt_{i} \right) \left(\int h|t_{z}\rangle e^{-j2\pi f t_{z}} dt_{z} \right)$ $= \left(\int R_{x}|t'\rangle - j^{2\pi f t'} dt' \right)$ $= H(t) H(-t) S^{x}(t)$ $S_{y}(f) = |H(f)|^{2} S_{x}(f)$