Here we focus on a specific subset
of random processes:
stationary random processes (section 9.6)
But first, a few other specific subsets:
uncorrelated Random Processes
cross-covariance
$$C_{xy}(t_1, t_2) = 0$$

for all t_1 and t_2

orthogonal Random Processes cross correlation Rxy (t, ,tr) = 0 for all t, and tr

Example: Auto correlation for a discrete -time RP
Let
$$X_n$$
 be a sequence of 2 interleaved $\begin{pmatrix} \text{Example} \\ 9,34 \end{pmatrix}$
independent random variables
 $X_n (n \text{ odd})$
 $f_{X_n}(x) = \begin{cases} 1/2 & x=+1 \\ 1/2 & x=-1 \\ 0 & \text{dse} \end{cases}$
 $X_n (n \text{ even})$
 $f_{X_n}(x) = \begin{cases} 9/10 & x=-3 \\ 1/2 & x=-1 \\ 0 & \text{dse} \end{cases}$

Recall:
$$m_x(n) = 0$$
 for all n , and
 $R_x(i,j) = \begin{cases} 1 & i=j \\ 0 & i+j \end{cases}$
1) $m_x(n)$ is constant, same value for
all n
so part 1) is true
2) Rewrite $R_x(i,j)$ m terms C_b
 $(i-j)$ if possible
 $R_x(i,j) = \begin{cases} 1 & i-j=0 \\ 0 & i-j\neq 0 \end{cases}$
there are no terms expressed as "i" or "j",
only "i-j". So part 2) is also true

=) Yes, wide sense stationary

Examples for continuous-time RPS
Random amplitude

$$X(t) = A \cos 2\pi t$$
 where A is
uniform RV on [0,1]
Recall $M_X(t) = \frac{1}{2} \cos 2\pi t$
 $R_X(t, t_2) = \frac{1}{3} \cos 2\pi t$, $\cos 2\pi t_2$
Question 1: is $X(t)$ strict-sense stationary?
No we already shared the pdf of
 $X(t=0)$ is not the same os, say, the
pdf of $X(t=1/2)$
Question 2: is $X(t)$ wide sense stationary?
No. $M_X(t)$ is not constant with time.

Kandom phone RP $\chi(t) = \cos(\omega t + \theta)$ where O is a uniform RV on [-TT, TT] Recall m_{x} lt) = E(X(t)) = 0 and $R_X(t_1, t_2) = E(X(t_1)X(t_1))$ $= \frac{1}{2} \cos \left(\omega \left(t_1 - t_2 \right) \right)$ 6 this RP wss? a) mean is a constant that does not depend on time. Good sofar b) auto conclation function dependo $m(t_1, -t_2)$ not on t_1 , or t_2 individually. $R_{X}(t_{1},t_{1}+T) = \frac{1}{2} co(w(t_{1}-(t_{1}+T)))$ $= \frac{1}{2} \cos \omega T$ $= R_{X}(\tau)$ yes, both conditions are satisfied => WSS.

An example that requires interpreting a given $R_{x}(\tau)$.

If $R_{x}(\tau) = e^{-|\tau|}$ for a wss RP $\chi(t)$, what is $E(\chi(\tau)\chi(t))$?

$$E(X(2) X | 4)) = R_{X} (2, 4)$$

= $R_{X} (2-4) = R_{X} (4-2)$
= e^{-2}

A few sample autocorrelation functions
$$R_{X}(t)$$

 $R_{X}(t) = e^{-a|t|}$
for all t and $a > 0$
 $R_{X}(t) = \frac{a^{2}}{2}$ and $a > 0$
 $R_{X}(t) = \frac{a^{2}}{2}$ and $R_{X}(t)$
 $R_{X}(t) = \frac{a^{2}}{2}$ and $R_{X}(t) = \frac{a^{2}}{2}$ and $R_{X}(t) = \frac{a^{2}}{2}$ and $R_{X}(t)$ is periodic w/period $\frac{1}{f_{0}}$
If X_{n} is ind sequence of RV_{S} with
zero mean and variance σ^{2}
and $Y_{n} = \frac{X_{n} + X_{n-1}}{2}$ (the average)
First, $R_{X}(t)_{j} = R_{X}(t-j) = \begin{cases} \sigma^{2} & \text{if } i=j \\ \sigma & \text{if } i\neq j \end{cases} = E(X;X_{j})$
Then $E(Y_{n}) = 0$ and $C_{Y}(i,j) = R_{Y}(i,j)$
 $R_{Y}(i,j) = E(Y;Y_{j}) = \frac{1}{4}E[X_{i} + X_{i-1}](X_{j} + X_{j+1})]$
 $= \frac{1}{4}E[X;X_{j}] + \frac{1}{4}E[X_{i} + X_{i-1}](X_{j} + X_{j+1})]$
 $R_{Y}(i-j) = \frac{1}{4}[R_{X}(i-j) + R_{X}(i-j+1) + R_{X}(i-1+j) + R_{X}(i-j)]$
 $R_{Y}(i-j) = \frac{1}{4}\begin{bmatrix} 2\sigma^{2} & \text{if } i=j \\ \sigma^{2} & \text{if } i=j \\ 0 & \text{else} \end{bmatrix}$

4 of 5 Properties of WSS and RxIt) (Note: if $C_x(t_1,t_2) = C_x(t_2-t_1) = C_x(t) \forall t_1, t_2$ and $M_x(t) = M_x$, then $R_x(t_1, t_2) = R_x(t_1)$ (1) Rxlo) = average power of X(t) $|R_{\chi}(\circ) > \Im$ (2) $R_{X}(-T) = R_{X}(T)$ symmetric proof: Rx(T) = E(x(t) X(t+T)) $= E(\chi(t+T)\chi(t))$ let T' = t+T $= E(X(T') \times (T' - T))$ $= R_{x}(-\tau)$

(3) $|R_{\chi}(\tau)| \leq R_{\chi}(0)$ maximum @ $\tau = 0$

(f) Positive semidefinite function $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(t_{1}) R_{x}(t_{1}-t_{0}) a(t_{0}) dt_{1} dt_{0} \ge 0$ for any real function alt)

Examples of applying the 1st 4 properties
Are the following functions' valid autocorrelation:
A)
$$R_X(t) = A \sin wt$$

No. not even symmetric
b) $R_X(t) = Ae^{(t)}$
No. $R_X(t) = Ae^{(t)}$
No. $R_X(t) = AS(t)$
Yes. Satisfies all.
This is the autocorrelation
 $function for white noise$
d) $R_X(t) = A \cos wt$
Yes. Even symmetric,
 $Max at zwo, posibire nonzero $R_X(o)$.
Also posible semi definite:
 $\int_{-\infty}^{\infty} \int_{0}^{\infty} a(t_1) A \cos w(t_1-t_0) a(t_0) dt, dto$
 $= A [a] [a] = A[a]^2$
which is posibire.$

Property 5 of
$$R_{X}(t)$$

$$P(| X|t+t) - X(t) | > \epsilon) \leq \frac{2(R_{X}(t) - R_{X}(t))}{\epsilon^{2}}$$
The autocorrelation function measures the value of change of the WSS RP
Proof: was the Markov inequality from section 4.6 equation (4.75)

$$P(X \ge a) \leq \frac{E(X)}{a} \quad \text{for non-negative } RVS X.$$
Think of $|X(t+t) - X(t)|^{2}$ as the RV and apply Markov inequality for ϵ

$$P(| X|t+t) - X|t) | > \epsilon)$$

$$= P((X(t+t) - X(t))^{2} > \epsilon^{2})$$

$$\leq E((X|t+t) - X|t)|^{2} > \epsilon^{2})$$

$$= E(x^{2}(t+t)) + E(X^{2}(t)) - 2E(X|t+t)X(t))$$

$$\epsilon^{2}$$

$$= \frac{2[R_{X}(t) - R_{X}(t)]}{\epsilon^{2}}$$

Interpretation of Property 5 of
$$R_{X}(t)$$

 $P(||X|t+t) - X(t)| > \epsilon| \leq \frac{2(R_{X}(t) - R_{X}(t))}{\epsilon^{2}}$
Interpretation: Relates 2 things
(1) the amount X varies in T seconds
 $||X|t+t\rangle - X(t)|$
(2) the autocorrelation function @ T and 0.
a) if $R_{X}(t) - R_{X}(t)$ is large
then R_{X} decays respidly
and the probability of a large
change in X is high.
 \Rightarrow what happens at time t tells us little about
what will happen at t+T
b) if $R_{X}(t) - R_{X}(t)$ is small
then R_{X} decays slavly
and the probability of a large
 $Change in X$ is small
 $=$ what happens at time t tells us a lot about
what will happen at $t+t$
 $=$ what happens at time t tells us a lot about
what will happen at $t+t$

Application of
$$R_{x}(t)$$
 for prediction
(similar concepts for
discrete time)
auto correlation function $R_{x}(t)$,
and we want to predict the
future valuels) of $X(t)$ from
the current/previous values, what's
the best predictor?
Example : Suppose we want to predict
 $X(t+1)$ from $X(t)$, and we want
to minimize the mean squared emor
and we want a linear predictor
Define predictor as $\hat{x}(t+1) = a X(t)$
what's the best value of a?
Mean squared error: $E[(\hat{x}(t+1) - X(t+1))]$
 $= E[(a X(t) - X(t+1))^{2}]$

$$= a^{2} E(x(t)^{2}) - 2a E(x(t)x(t+1)) + E(x(t+1)^{2})$$

translate this into $R_{x}(T)$

$$= a^{2} R_{x}(0) - 2a R_{x}(1) + R_{x}(0)$$

$$= (a^{2} + 1) R_{x}(0) - 2a R_{x}(1)$$

This is a Runchon of
prediction coefficient a
Find the bast a by differentiating w.r.t a
setting to zero, and solving for a,

$$\frac{d}{da} = 2a R_{x}(0) - 2R_{x}(1) = 0$$

$$\boxed{a = \frac{R_{x}(1)}{R_{x}(0)}}$$