Introduction to Random Processes

Topic 4.1 . Examples of $x(t)$ and X_{n} mean and variance functions

Topic 4.2 How are $X\left(t_{1}\right)$ and $Y\left(t_{2}\right)$ related? 2nd-order statistics
ex: auto correlation and cross -covariance

Topic 4.3 Defining a useful subset of RP using their auto correlation function

The goal

what is the relationship between $X(t)$ and $Y(t)$?

Chapter 9: Random Processes
The out come of a random experiment that varies as a function of time (and/or space)
Examples: speech signal
images
temperature and the demand for power
Overview of topics:
Sect 9.1 : definitions
Sect 9.2: joint distributions, mean function, autocorrelation function', auto covariance function.
Sect 9.6: Stationary Random Processes
Sect 10.1: Power Spectral Density
Sect 10.2: Response of an LT1 system when the riput is a Random Process

Stochastic Process is another name for a Random Process
Abbreviation: RP

Recall: We do 4 things in thin class
(1) build models
(2) compute probabilities
(3) learn or infer
(4) Compute summary statiotics.
with respect to random processes, we will focus on building model and computing summary statistics.

Specifically, we will build on the conupts of correlation and covariance
to consider auto correlation and
auto covariance, and
cross correlation and cross covariance.

We will also build model by considering what happens when we input a specific type of random process into a Linear Time Invariant system (LTI)

Questions we may want to address about Random Processes
mean - how does it change with time?
Variance -
How does a sample at one time instant velate to a sample a another time?
Does each sample have the same PDF, or does the PDF vary with time?
Can we compute a time average and expect it to represent the average @ a specific time?

How can we make decisions under uncertainty?

So far, weave chosen an instant in time.
But the world is dynamic.
For engineering, we need to quantify these thing, need to have a mechanism to analyze

Random (Stochastic) Processes (RP)
A random experiment, a set of possible outcomes w, and -for each possible outcome an instance of the RP: $x(t, \omega)$
$x(t, \omega)$ is a random process

- a deterministic function of
both t and w
For one outcome

For another ont rome

As a 2D function, we can explore it in t, w, and both
(1) Fix $t=$ to $_{0}$. Sample in time. (use 302) $x\left(t_{0}, w\right)$ is a random variable
methods
(2) Fix $w=w_{0}$. Choose a realization/instance/outcome $x\left(t, w_{0}\right)$ is just a function of time (use 301 methods)
(3) New tools when we fix neither w nor.

An example random process:
the number of ECE 302 students in the classroom as a function of tine. $v(t)$
$N(t)$

over all, this
is a set of realizations

Random process examples
context: driving on an icy day on the streets of west Lafayette in
\#accidents as a function of time
stopping time as a function of space traction of me vehicle as a function of time distance of slippage as $f(t)$
thickness of ice on the wirdsheild precipitation rate as function Time
\# cars that pass through Grant/State intersection'
\# cars that ane wailing at a specific red light wait time of a particular car C a red ught \# pedestrians in a walluvan @ an intersection
Color of the light being emitted from the traffic signal

RPs can be discrete or continues time, and can have discrete or continuois values

Examples: Cone sample
Continuous time instance each) Discrete time conlinuons value

Continuous time Discrete value
$x(t)$
 continuous value
x_{k}

Descinete fine Discrete value

ContinuouD-time (1) random amptilude sinusoid continuono-value
examples: (2) random phase sinusoid
(3) random frequency sinusoid

Note: $X(t)$ is both the name of the $R P\binom{$ a function }{ of $t}$
and the name of the RV
that corresponds to sampling $X(t)$ at t.
Random Amplitucle.
Let A be uniformly distributed on $[0,1]$. (Recall its full name is $A(\omega)$, a R.V.)
Let $x(t)=A \cos 2 \pi t \quad$ (we cold call if $x(t, \omega)$) if $x\left(w_{1}\right)=1 / 2$

$$
x\left(t, w_{1}\right)=\frac{1}{2} \cos 2 \pi t
$$

if $x\left(w_{2}\right)=1$
different possible realization o

We call the set of all possible outcomes the ensemble.

Recall: we can view this RP 3 ways
(1) Fix $t=t_{0} . \quad x\left(t_{0}, \omega\right)$ is a random variable.
w) possible values between 0 and $A \cos 2 \pi$ to
example pdf:

Note: for $t_{0}=1 / 4$ or $t_{0}=3 / 4$,
(if cor 2π to is negative)
A different RV for each value of t
there is only one possible outcome for

$$
x\left(t_{0}\right)=A \cos 2 \pi / 4=0
$$

(2) Fix $w=w_{0} . X\left(t, w_{0}\right)$ is a function of Tinie.
(Two examples were shown earlier)
(3) Fix neither, compute mean and variance as a function of time

$$
\begin{aligned}
& E(x(t))=E(A \cos 2 \pi t)=E(A) \cos 2 \pi t \\
& =\frac{1}{2} \cos 2 \pi t \\
& \text { part the mean is } \\
& \text { a function of } \\
& \operatorname{Var}(x(t))=E\left(x(t)^{2}\right)-E(x(t))^{2} \text { Time. } \\
& E\left(x(t)^{2}\right)=E\left(A^{2} \cos ^{2} 2 \pi t\right)=\frac{1}{3} \cos ^{2} 2 \pi t \quad \sqrt{\operatorname{Var}(x \mid t))=\frac{1}{12} \operatorname{crs}^{2} 2 \pi t}
\end{aligned}
$$

Another example: Random Phase sinusoid
Let $\theta(\omega)$ be a uniform $R V$ on $[0,2 \pi)$. and let B be a constant.

Let $y(t, \omega)=B \cos (2 \pi t+\theta)$
 for this RP

$$
\begin{aligned}
E(y(t)) & =E(B \cos (2 \pi t+\theta)) \\
& =B E(\cos (2 \pi t+\theta)) \\
& =B \cdot O=0 \\
E\left(y^{2}(t)\right) & =E\left(B^{2}(\cos (2 \pi t+\theta))^{2}\right) \\
& =\frac{1}{2} B^{2} E(1+\cos (4 \pi t+2 \theta)) \\
& =B^{2} / 2+0 \quad \cos ^{2} \theta=\frac{1}{2}[1+\cos 2 \theta] \\
\operatorname{Var}(y(t)) & =\frac{B^{2}}{2}-0=B^{2} / 2
\end{aligned}
$$

Another example: Random frequency sinusoid
Roll a die. Sample space $S=\{1,2,3,4,5,6\}$

$$
K=\# \text { on die. }
$$

The Random Process is

$$
\begin{array}{r}
X(t, k)=\cos 2 \pi k t \\
k=1,2,3, n, 6
\end{array}
$$

This random process has ito frequency selected random.

$\omega=k$	$x(t)$
1	$\cos 2 \pi t$
2	$\cos 4 \pi t$
3	$\cos 6 \pi t$
4	$\cos 8 \pi t$
5	$\cos 10 \pi t$
6	$\cos 12 \pi t$

These 3 RPS (randomamplitade, random phase, and random frequency) are common in communication' theorem. (ECE 440)
Satellite TV, cell phones, AM and FM radios

Another example RP: QPSK
Quatemary Phase Shift Keying (for comm systems)

4 equally probable symbol $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)$ One sent even T seconds
To send symbol S_{k}, send the waveform

$$
x\left(t, s_{k}\right)=\cos \left(2 \pi f_{0} t+\pi / 4+k \pi / 2\right)
$$

during each T-second interval
Because there is randomness in which symbol is sent, $X(t)$ is a random process

Receive: $y(t)=X(t)+N(t) \longleftarrow$ abs a $R P$

Goal is to estimate the fransmittel $x(t)$ from the received $Y(t)$, or more precisely, estimate S_{k} from $Y(t)$ in each time interval

QPSK is used for satellite transmission of mPEG-2 video

A tine delayed ramp function
$x \mid t)=t-T$, where T is a RV,

$$
f_{T}(t)=e^{-t} \quad t \geqslant 0
$$

What is PDF of the RV $X(t)$?
(For clarity and the sake of explanation, lets'
loole for the PDF of a specific $X\left(t_{0}\right)$ and then generalize)

$$
\begin{aligned}
F_{x}(x) & =P\left(X\left(t_{0}\right) \leq x\right)=P\left(t_{0}-T \leq x\right) \\
& =P\left(T \geqslant t_{0}-x\right)
\end{aligned}
$$

At this stage, we have to be careful. $T \geqslant 0$, so

$$
F_{x}(x)=1-F_{T}\left(t_{0}-x\right) \text { if } t_{0}-x>0 \text { or } x<t_{0}
$$

and $F_{x}(x)=1-0=1$ if to $-x<0$ or $x>t_{0}$
Note: this CDF has no discontinuities!
so no special cases to consider when differentiating

$$
\begin{aligned}
f_{X}(x)=\frac{d}{d} F_{X}(x) & =-f_{T}\left(t_{0}-x\right)(-1) \text { when } x<t_{0} \\
& =f_{T}\left(t_{0}-x\right)=\left\{\begin{array}{cl}
e^{x-t_{0}} x<t_{0} \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

sketch:

$$
x
$$

Intuition:
what are the possible realizations of the RP?

Because $T \geq 0$, the ramp can become positive for any positive value of time.
The Glue ramps below are all possible.
The green ramp is not.

T our sample tine to
Not possible to get values of $X\left(t_{0}\right)>t_{0}$
"most likely" scenario is to have $x\left(t_{0}\right)=t_{0}$ because the "most likely" value of $T=0$,

Some definitions through a discrete-time example
Bernoulli Process (docuete time, discrete valued)
X_{k} has independent samples.
Each is either +1 or -1 .

$$
P\left(X_{k}=+1\right)=p \quad P\left(X_{k}=-1\right)=1-P
$$

if $p=1 / 2$, "binary white noise".
a wide sense Stationary
process: The probability of a sequence with n ti's and m l's is always $p^{n}(1-p)^{m}$ regardless of the starting point. (we will discus this property moe later)
Ergodic: $E\left(X_{k}\right)=2 p-1$

$$
\operatorname{Var}\left(x_{k}\right)=4 p(1-p)
$$

Ensemble average

$$
\mu_{x}(t)=E(X(t)) \longleftarrow \text { averape a cross }
$$

Time average $\hat{\mu}_{x}=\frac{1}{T} \int_{0}^{T} x(t) d t \longleftarrow$ average across time

Binomial Counting Process
Let X_{i} be a sequence of i.i.d.
Bernoulli RVs. (pavameter p)

Let $S_{n}=\sum_{i=1}^{n} X_{i}$
(the sum of the $1^{\text {st }} n$ trials)
S_{n} is a non decreasing function that grows by are @ random discrete limes

Sample realization

At any fine n, S_{n} (the $R V$) is a binomial R with parameters (n, p).
So we can write its PMF:

$$
P_{S_{n}}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \begin{aligned}
& \text { for } \\
& n \\
& \text { and } \\
& 0 \leq 0
\end{aligned}
$$

Poisson Process (continuons time, discrete valued)
$N(t)$ is the number of event occurences in a time interval $[0, t]$, where events occur at random at average rate λ
This is a non decreasing, integer-valued, continuous-time RP.
(Chapter 9.4)
$N(t)$
time
We can view this as a limiting case of the binomial counting process.
Consider each time instance in the binomial process to be associated with a small continuons_time mcument with duration δ.

- Only one event can occur inside that interval (because δ is 80 small) \Rightarrow equivalent to a Bernoulli trial inside interval - whether an event occurs in one interval is independent of it happening in any other

If the prob. an event occurs in a small interval δ is P, and $t=n \delta$, then the expected \# occurences in time t is $n P$.
The rate of occurences is λ per second, so

$$
\lambda t=n p
$$

If we let $n \rightarrow \infty$, keeping $t=\delta / n$, and let $p \rightarrow 0$,', keeping $n p=\lambda t$ fixed, then $P(N(t)=k)=$ poisson imf. awl $\alpha=\lambda t$
Parson process $\omega /$ rate λ

- \#arivals in any interval $\left(t_{0}, t_{1}\right)$ is a Poisson RV with expeded value
$\lambda\left(t_{1}-t_{0}\right)$ (Note! this depends on the length of the interval and is consistent w/ what we saw befree,
- For any non-overlapping interval, the \# arrivals in each interval (which are both RVS) are independent
- $E(N(t)) / t=\lambda$

If $N(t)$ is Poisson process $\omega /$ rate λ
(1) \# arrivals u any interval $\left(t_{0}, t_{1}\right)$ is a Poisson RV with expeded value

$$
\lambda\left(t_{1}-t_{0}\right)
$$

(Notes this depends on the length of the interval and why? is consistent w/what we saw fefre.

If the prob. an event occurs in a small interval δ is P, and $t=n \delta$, then the expected \# occurences in time t is $n p$.
The rate of occurences is λ per second, so

$$
\lambda t=n p
$$

If we let $n \rightarrow \infty$, keeping $t=\delta / n$, and let $p \rightarrow 0$, , keeping $n p=\lambda t$ fixed, then $P(N(t)-k)=$ poisson imf. cl $\alpha=\lambda t$
and

$$
E(N(t))=\lambda t
$$

(2) The \# occurences in any 2 non over lapping time intervals are independent RVs
(3)

Consider now the time interval T between any two events occuring in a Poisson process, example, between the $(n-1)^{\text {th }}$ and the $n^{\text {th }}$ occurence

$$
f_{T}(t)=\lambda e^{-\lambda t} \text { for } t>0 \quad \text { exponential } R V!
$$

why?

$$
F_{T}(t)=1-P(T>t)
$$

$P(T>t)=P($ noevento happen in t seconds $)$
Dine the interval $[0, t]$ into n small not overlapping subintervals, each length $\delta=t / n$
These are small enough the probability of 2 occurrences happening in ore small subinterral is basically 0 .
using our assumption earlier, P (occurrence in small sub interval) $=P$, then
$P($ no occurrences in interval length $t=n \delta)=(1-P)^{n}$ which as $n \rightarrow \infty$ awl $p=\frac{\lambda t}{n}$, this $\rightarrow e^{-\lambda t}$.

Discrete random walk ($\left.\begin{array}{c}\text { discrete time } \\ \text { discrete value }\end{array}\right)$

$$
x_{k}=x_{0}+\sum_{l=1}^{k} B_{l} \quad k>0
$$

X_{0} initial condition'
B_{k} a Bernoulli RP (recall: B_{k} are ind Bernoulli RVS)

$$
\left(B_{l}=0 \text { or } B_{l}=1 \text { for all } l\right)
$$

$$
\begin{aligned}
E\left(X_{k}\right) & =E\left(X_{0}\right)+\sum_{\ell=1}^{k} E\left(B_{l}\right) \\
& =E\left(X_{0}\right)+k(2 p-1)
\end{aligned}
$$

The mean depends on time index k, so this is not a stationary process

Gaussian Process
$X(t)$ is a Gaussian RP if and only if

$$
\left[x\left(t_{1}\right), x\left(t_{2}\right), \cdots, x\left(t_{n}\right)\right]
$$

is a Gaussian vector for any n and any $\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$
(a similar definition for a disevete-time Gaussian Process)

Discrete -time system

$$
y_{k}=\sum_{l=0}^{n} a_{l} x_{k-l}
$$

Both X_{k} and y_{k} are discrete - time RPs

