Functions of 2 RVs (chapter 5.8)
If $z=g(X, y)$ what is $f_{z}(z)$ in terms of $f_{x y}(x, y)$?
In general, use the 2 -step process.
(1) Find $F_{z}(z)=P(Z \leq z)$, expressed in terns of $F_{x y}(x, y)$ or $F_{x y}(x, y)$
(2) differentiate to get $f_{z}(z)=\frac{d}{d z} F_{z}(z)$

Example functions
X is the signal amplitude @ a transmitter Y is the attenuation factor between transmitter and receiver $z=X / Y$ is the signal amplitude at receiver
x and y are two versions of the same signal arriving to a receiver by different paths.

- Selection diversity combining $z=\max (|x|,|y|)$
- equal gain combining

$$
\begin{aligned}
& z=X+Y \\
& z=a X+b Y
\end{aligned}
$$

- max-ratio combining
and choose a and b to optimize. receiver

Case (1) $Z=\max (X, Y)$ and X and Y are what is $F_{z}(z)$? independent

$$
\begin{aligned}
F_{z}(z) & =P(Z \leq z)=P(X \leq z \text { and } Y \leq z) \\
& =P(X \leq z) P(y \leq z)=F_{X}(z) F_{Y}(z)
\end{aligned}
$$

Can be extended to n independent $R V$ s.
$Z=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ then

$$
F_{z}(z)=\prod_{i=1}^{n} F_{x_{i}}(z)
$$

Case (2) $z=\min (x, y)$ and x and y are what is $F_{z}(z)$? independent

$$
\begin{aligned}
F_{z}(z) & =P(z \leq z)=P(X \leq z \text { or } y \leq z) \\
& =1-P(X>z \text { and } y>z) \\
& =1-P(x>z) P(y>z) \\
& =1-\left(1-F_{x}(z)\right)\left(1-F_{y}(z)\right)
\end{aligned}
$$

Cam be extended to n independent $R V$ s $z=\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ then

$$
F_{z}(z)=1-\prod_{i=1}^{n}\left(1-F_{x_{i}}(z)\right)
$$

Sum of any 2 random variables (Chapter 5.8)
$z=x+y$. what is the pdf of z ?
use the 2 -step process. That is, find CDF of z, then $p d f$ of z.

$$
\begin{aligned}
F_{z}(z) & =P(z \leq z) \\
& =P(x+y \leq z)
\end{aligned}
$$

so integrate

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x^{\prime}} f_{x y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}
$$ joint $p d f$ of

$$
f_{z}(z)=\frac{d}{d z} F_{z}(z)=\int_{-\infty}^{\infty} f_{x y}\left(x^{\prime}, z-x^{\prime}\right) d x^{\prime}
$$

true for any X and Y
Now suppose x and y are independent

$$
\begin{array}{r}
f_{x y}(x, y)=f_{x}(x) f_{y}(y) \\
f_{z}(z)=\int_{w \infty}^{\infty} f_{x}\left(x^{\prime}\right) f_{y}\left(z-x^{\prime}\right) d x^{\prime}
\end{array}
$$

Convolution! The pdf of the sum of 2 independent RVS io a convolution of their marginal pdfs

Example X and Y are independent each is uniformly distributed between $[0,1]$ what is the PDF of $x+y=z$?

$$
\begin{aligned}
& f_{z}=f_{x} * f_{y} \quad f_{x}(x)=u(x)-u(x-1) \\
& f_{z}(z)=\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x
\end{aligned}
$$

Break into regions for different values of z based on overlap
If $z<0$ or $z>2$, thesis no overlap $\Rightarrow f_{z}(z)=0$
If $0<z<1$

if $1<z<2$

So $f_{z}(z)=\left\{\begin{array}{cc}0 & z<00 r z>2 \\ z & 0 \leq z \leq 1 \\ 2-z & 1 \leq z \leq 2\end{array}\right.$

