A series of examples for estimating/bounding a probability when the PDF is unknown.
The orders at a restaurant are IID.
Estimate the probability the 1s) 100 customers, combined, spend at least $\$ 840$.
In general

$$
\begin{aligned}
m_{100} & =\frac{1}{100} \sum_{i=1}^{100} X_{i} \\
E\left(m_{100}\right) & =E\left(X_{i}\right) \\
\operatorname{Var}\left(m_{100}\right) & =\frac{\operatorname{Var}(x)}{100}
\end{aligned}
$$

and

$$
S_{100}=100 m_{100}=\sum_{i=1}^{100} x_{i}
$$

Case 1: $E(X)=\$ 8 \quad$ (and that all we know)
use Markov inequality

$$
\begin{aligned}
& E\left(m_{100}\right)=8 \\
& P\left(S_{100} \geqslant 840\right)=P\left(M_{100} \geqslant 8.4\right) \leq \frac{E\left(m_{100}\right)}{8.4} \\
&=\frac{80}{84}
\end{aligned}
$$

(awfully close to 1 to provide much info, but at least it's less than 1!)

Case 2: $E(x)=\$ 8$ and $\operatorname{STD}(x)=\$ 2$
Use cheobyshev inequality

$$
\begin{aligned}
& E\left(M_{100}\right)=8 \text { and } \operatorname{Var}\left(M_{100}\right)=\frac{(2)^{2}}{100}=0.04 \\
& P\left(s_{100} \geqslant 840\right)=P\left(m_{100} \geqslant 8.4\right)=P\left(m_{100}-8 \geqslant 0.4\right) \\
& \leqslant P\left(\left|m_{100}-8\right| \geqslant 0.4\right) \quad\binom{\text { because it a }}{\text { larger event }} \\
& \leq \frac{\operatorname{Var}\left(m_{100}\right)}{(0.4)^{2}}=\frac{0.04}{(0.4)^{2}}=0.25
\end{aligned}
$$

(A much more use fol upper bound)
Case 3: $E(x)=\$ 8, \operatorname{STD}(X)=\$ 2$, and M_{100} is "approximately Gaussian"
use Central Limit Theorem

$$
\begin{aligned}
P\left(m_{100} \geqslant 8.4\right)=P\left(\frac{m_{100}-E\left(m_{00}\right)}{\sqrt{\operatorname{Var}\left(m_{100}\right)}} \geqslant \frac{8.4-E\left(m_{100}\right)}{\sqrt{\operatorname{VAR}\left(m_{100}\right)}}\right) \\
=P\left(z \geqslant \frac{8.4-8}{\sqrt{0.04}}\right)=P\left(z \geqslant \frac{0.4}{0.2}\right) \\
=1-P(z<2)=1-\Phi(2) \\
=0.0228
\end{aligned}
$$

