A series of examples for estimating/bounding
a probability when the PDF is unknown.
The orders at a restaurant are TID.
Estimate the probability the 1st 100 customers,
combined, spend at least \$840.
In general
$$M_{100} = \frac{1}{100} \sum_{i=1}^{100} X_i$$

 $E(M_{100}) = E(X_i)$
 $Var(M_{100}) = \frac{Var(X)}{100}$
and
 $S_{100} = 100 M_{100} = \sum_{i=1}^{100} X_i$
 $Case 1: E(X) = $8 (and that all we know)$
 $uce Markov inequality$
 $E(M_{100}) = 8$
 $P(S_{100} \ge 840) = P(M_{100} \ge 8.4) \le \frac{E(M_{100})}{84}$
 $= \frac{80}{84}$
 $(awfully close to 1 to provide much info, but at least its less than 1!$

Case 2:
$$E(x) = \$B$$
 and $\$TD(x) = \2
Use chebyshev inequality
 $E(M_{100}) = \$$ and $Var(M_{100}) = \frac{(2)^2}{100} = 0.04$
 $P(\$_{100}) = \$$ and $Var(M_{100}) = P(M_{100} - \$ \ge 0.4)$
 $\leq P(|M_{100} - \$| \ge 0.4)$ (because its a)
 $\leq Var(M_{100}) = 0.04$
 $\leq Var(M_{100}) = 0.04$
 $\leq Var(M_{100}) = 0.25$
(A much more use ful upper bound)
Case 3: $E(x) = \$8$, $\$TD(x) = \2 , and
 M_{100} is "approximately Gaussian"
Use Central Limit Theorem
 $P(M_{100} \ge \$.4) = P(\frac{M_{100} - E(M_{100})}{\sqrt{Var}(M_{100})} \ge \frac{\$.4 - E(M_{100})}{\sqrt{Var}(M_{100})}$
 $= P(2 \ge \frac{\$.4 - \$}{\sqrt{0.04}}) = P(2 \ge \frac{0.4}{0.2})$
 $= 1 - P(2 < 2) = 1 - \overline{P}(2)$
 $= 0.0228$