Central Limit Theorem (CLT) chapter 7.3

- Considers the CDF of the sample mean
-intuition: Sample mean has a CDF the approaches the Gaussian $C D F$ as we increase the number of samples $(n \rightarrow \infty)$
\Rightarrow we can use the Gaussian CDF to approximate the CDF of the sample mean when we have many samples
- This is a key reason the Gaussian distribution is so use fore and important.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of lid $R V_{s}$ of any distribution (discrete or continuom).
Then, if $\mu=E(x)$ and $\sigma^{2}=\operatorname{Var}(x)$ are both finite, and we define

$$
z_{n}=\frac{n m_{n}-n \mu}{\sigma \sqrt{n}}=\frac{m_{n}-\mu}{\sigma / \sqrt{n}}=\sqrt{n} \frac{m_{n}-\mu}{\sigma}
$$

then z_{n} has zero mean and unit variance and

$$
\lim _{n \rightarrow \infty} p\left(z_{n} \leq z\right)=\frac{1}{2 \pi} \int_{-\infty}^{z} e^{-x^{2} / 2} d x=\Phi(z)
$$

In words: The CDF of Z_{n} is well-approximated by the CDF of a Gaussian w/ mean D and variance 1.
And the approximation' gets better as n increases.

How can we use this?
Recall $z=\frac{x-\mu}{\sigma}$ is Gaussian with mean 0 variance 1 , if x is Gaussian with mean μ, variance σ^{2}.

So CLT says that
m_{n} io "approximately Gaussian" cor more precisely, that the CDF of m_{n} is approximately a Gaussian CDF) and $E\left(m_{n}\right)=\mu$ and $\operatorname{Var}\left(m_{n}\right)=\frac{\sigma^{2}}{n}$

So

$$
z_{n}=\frac{m_{n}-E\left(m_{n}\right)}{\sqrt{\operatorname{Var}\left(m_{n}\right)}}=\frac{m_{n}-\mu}{\sigma / \sqrt{n}}=z_{n}
$$

In has a CDF that is well approximated by a Gaussian CDF w/ mean O variance

Example of applying CLT
The orders at a restaurant are IID, $\mu=\$ 8$ and $\sigma=\$ 2$.
Estimate the probability the first 100 customers spend a total of moe than $\$ 840$.

$$
\begin{aligned}
& M_{100}=\frac{1}{100} \sum_{i=1}^{100} X_{i} \text { 三 the } R V \text { of how } \\
& \text { much the Sst } 100 \\
& \text { customers spend }
\end{aligned}
$$

By the Central Limit theorem, we know the CDF of M_{100} is well-approximated by a Gaussian CDF
so $z_{100}=\frac{m_{100}-\mu}{\sigma / \sqrt{100}}=\frac{m_{100}-\mu}{\sigma / 10}=\frac{m_{100}-8}{2 / 10}$
So we want $\left(m_{100}\right) 100>8: 40 \quad \Rightarrow \quad m_{100}>8.4$

$$
\Rightarrow z_{100}=\frac{M_{100}-8}{2 / 10}>\frac{8.4-8}{2 / 10}=\frac{4 / 10}{2 / 10}=2
$$

so $P\left(z_{100}>2\right)=1-\Phi(2)=0.0228$

How many orders are necessary for us to be 90% certain that the total spent by all customers is moe than $\$ 1000$.
Intuition: As n increases, the mean m_{n} increases. when is n large enorgh to be "confident" that $n M_{n}$ is larger than 1000

$$
\text { If } m_{125}
$$

$$
\begin{aligned}
& 125 M_{125} \\
& E\left(125 M_{125}\right)=1000
\end{aligned}
$$

So not yet big enough.

$$
\begin{aligned}
& Z_{n}=\frac{m_{n}-\mu}{\sigma / \sqrt{n}} \quad \text { want } P\left(n M_{n}>1000\right)>0.90 \\
& P\left(m_{n}>\frac{1000}{n}\right)=P\left(\frac{m_{n}-\mu_{n}}{\sigma / \sqrt{n}}>\frac{\frac{1000}{n}-\mu_{n}}{\sigma / \sqrt{n}}\right) \\
& =P\left(Z_{n}>\frac{\sqrt{n}\left(\frac{1000}{n}-\mu\right)}{\sigma^{2}}\right) \quad \text { (and simplify to get) } \\
& =P\left(z_{n}>\frac{1000-8 n}{2 \sqrt{n}}\right)=1-\Phi\left(\frac{1000-8 n}{2 \sqrt{n}}\right)=0.9
\end{aligned}
$$

from the table,

$$
\begin{aligned}
& \frac{1000-8 n}{2 \sqrt{n}}=-1.28 \Rightarrow \sqrt{n}=11.34 \\
& n=128.6 \Rightarrow \begin{array}{c}
\text { need } 129 \\
\text { customers }
\end{array}
\end{aligned}
$$

Example Suppose the times between event are iid exponential RVs with mean μ.
Find the probability that the $1000^{\text {th }}$ event occurs in the time interval $(1000 \pm 50) \mu$ ie. between 950μ and 1050μ.
Let X_{n} be the time between events (exponential) $S_{n}=\sum_{i=1}^{n} x_{i}=n m_{n}$ is the time of the $n^{\text {th }}$ event.

$$
\begin{array}{ll}
E\left(x_{i}\right)=\mu & \text { so } \quad E\left(S_{n}\right)=n \mu \\
\operatorname{Var}\left(x_{i}\right)=\mu^{2} & \text { so } \quad \operatorname{Var}\left(S_{n}\right)=n \mu^{2}
\end{array}
$$

By CLT, let $z_{n}=\frac{S_{n}-n \mu}{\sqrt{n} \mu} \quad\binom{$ Gaussian }{ zero mean $_{\text {unit var. }}^{\text {un }}}$

$$
\begin{aligned}
& z_{1000}=\frac{S_{1000-1000 \mu}}{\sqrt{1000} \mu} \\
& P\left(\frac{950 \mu-1000 \mu}{\sqrt{1000} \mu} \leqslant z_{1000} \leqslant \frac{1050 \mu-1000 \mu}{\sqrt{1000} \mu}\right) \\
& =\Phi\left(\frac{50 \mu}{\sqrt{1000 \mu}}\right)-\Phi\left(-\frac{50 \mu}{\sqrt{1000 \mu}}\right) \\
& =\Phi(1.58)-\Phi(-1.58)=1-2 \Phi(-1.58) \\
& =0.9418-0.0582=0.8836
\end{aligned}
$$

The fact that X_{i} is exponential is immaterial!

The Central Limit Theorem work for dwocete RVs tod. Example: binomial Binomial RV is a sum of id Bernoullis.

Let X be binomial, mean $n p$, variance np (1-p)
Let y be Gaussian, same mean and variance For longe $n, p(x=k) \approx p\left(k-\frac{1}{2} \leqslant y \leqslant k+1 / 2\right)$

We could compute this using the Φ function' as usual.
Or we could recognize that for large n, the interval $\left[k-\frac{1}{2}, k+\frac{1}{2}\right]$ is quite narrow
Simplify this app wximation further by

$$
p(x=k) \approx \frac{\exp \left(-(k-n p)^{2} / 2 n p(1-p)\right)}{\sqrt{2 \pi n p(1-p)}}
$$

