Let
$$X_{1}, X_{2}, ..., X_{n}$$
 be a sequence of iid RVs
of any distribution (discrete or conbinuous).
Then, if $M = E(X)$ and $\sigma^{2} = Var(X)$ are
both finite, and we define
 $Z_{n} = \frac{nMn - n\mu}{\sigma\sqrt{n}} = \frac{M_{n} - \mu}{\sigma\sqrt{n}} = \sqrt{n} \frac{Mn - \mu}{\sigma}$
then Z_{n} has zero mean and unit variance
and
 $Vim P(Z_{n} \leq z) = zTT \int_{z}^{Z} e^{-\chi^{2}/z} dx = \oint(z)$

In words: The CDF of Zn is well-approximated
by the CDF of a Gaussian W/mean O
and variance I.
And the approximation' gets better as n increases.
How can we use this?
Accall
$$Z = \frac{X-\mu}{5}$$
 is Gaussian
with mean O variance I,
if X is Gaussian with mean μ ,
variance 5^2 .
So CLT says that
Mn is "approximately Gaussian"
(or more precisely, that the CDF
of Mn is approximately a Gaussian cDF)
and $E(Mn) = \mu$ and $Var(Mn) = \frac{5^2}{n}$
So
 $Zn = \frac{Mn - E(Mn)}{\sqrt{Var(Mn)}} = \frac{Mn - \mu}{5\sqrt{5n}} = Zn$
Zn has a CDF that is well approximated
by a Gaussian CDF W/mean O variance]

Example of applying CLT
The orders at a restaurant are 11D,

$$\mu = \$ 8$$
 and $\sigma = \$ 2$.
Estimate the probability the first 100 customers
spend a total of more than $\$ 840$.
 $M_{100} = \frac{1}{100} \sum_{i=1}^{100} X_i = \text{the RV of how}$
much the $1\$ 100$ costomers spend
 $E(M_{100}) = \mu = 8$
 $Var(M_{100}) = \frac{5}{100} = 0.04$
By the Central Limit Theorem, we know
the COF of M_{100} is well-approximated
by a Gaussian CDF
 $\$ 2_{100} = \frac{M_{100} - M}{5/100} = \frac{M_{100} - M}{5/100} = \frac{M_{100} - 8}{2/10}$
So we would $(M_{100}) 100 > \$40 = 3$ $M_{100} > 8.4$
 $=7 \ge_{100} = \frac{M_{100} - 8}{2/10} > \frac{8.4 - 8}{2/10} = \frac{4/10}{2/10} = 2$
so $P(\ge_{100} > 2) = 1 - \frac{\Phi}{2}(2) = 0.0228$

Example Supprie the times between events
are iid exponential RVs with mean
$$\mu$$
.
Find the probability that the 1000th event
occurs in the time interval (1000 ± 50) μ
i.e. between 950 μ and 1050 μ .
Let Xn be the time between events (exponential)
 $S_n = \sum_{i=1}^{2} x_i = n Mn$ is the time of the nth event.
 $E(X_i) = \mu$ So $E(S_n) = n\mu$
 $Var(X_i) = \mu^2$ so $Var(S_n) = n\mu^2$
By CLT, let $2n = \frac{S_n - n\mu}{Tn\mu}$ (Saussian
 $2 roop = \frac{S1000 - 1000 \mu}{\sqrt{1000} \mu}$
 $P\left(\frac{950 \mu - 1000 \mu}{\sqrt{1000} \mu} \leq 2_{1000} \leq \frac{1050 \mu - 1000 \mu}{\sqrt{1000} \mu}\right)$
 $= \oint \left(\frac{50 \mu}{\sqrt{1000} \mu}\right) - \oint \left(-\frac{50 \mu}{\sqrt{1000} \mu}\right)$
 $= 0.941B - 0.0582 = 0.8836$
The fact that X; is exponential is immaterial!

The Control Limit Theorem works for
discrete RVs too. Example: binnmial
Binomial RV is a sum of iid Bernonllis.
Let X be finomial, mean np, variance

$$np(1-p)$$

Let Y be Gaussion, some mean and variance
for large n, $P(X=k) \approx P(K-\frac{1}{2} = Y \leq k+\frac{1}{2})$
We could compute this using the \overline{P} function
as usual.
Or we could recognite that for large n,
the interval $[K-\frac{1}{2}, K+\frac{1}{2}]$ is
quite narrow
Simplify this approximation further by
 $P(X=k) \approx \frac{exp(-(k+p)^2/2np(1-p))}{\sqrt{2tt}np(1-p)}$