In practice,
we often approximate the unlenown mean
$$\mu$$

by the sample mean.
 $\hat{\mu} = \frac{1}{n} \int_{i=1}^{2} \chi_{i} = M_{n}$
- the accurate is that approximation?
- Does that accuracy improve as we
take more samples (as n increases)?
- the fast does this accuracy improve?

Became the Xi's are RVs,
then Mn is a RV, so it has a
mean and variance
(1) what is the mean of the sample mean?

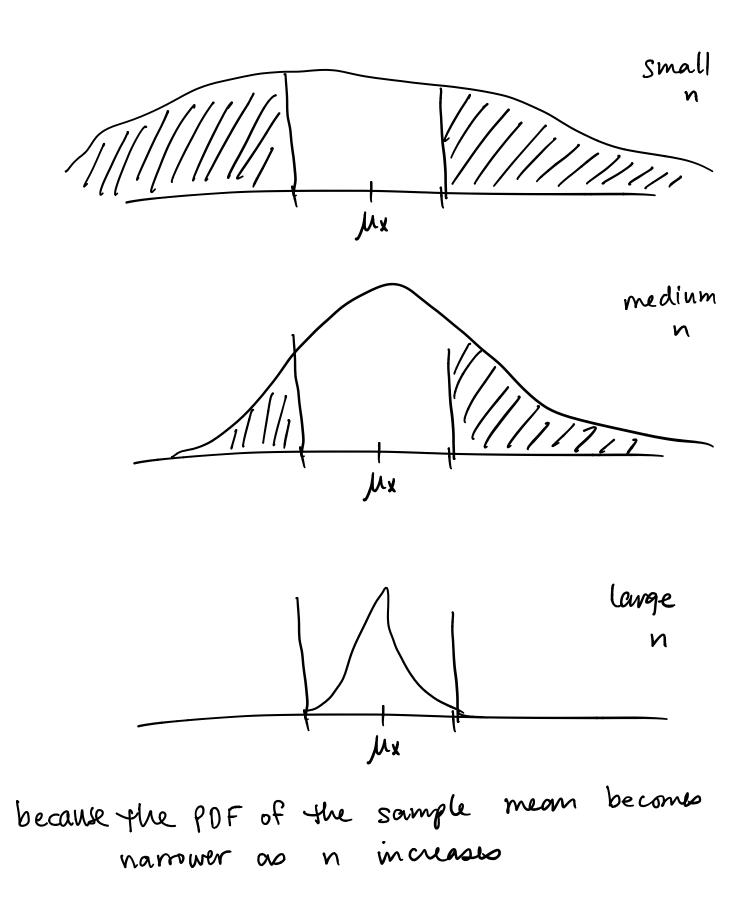
$$E(M_n) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}(nE(x_i))$$

 $= E(X_i) = \mu$.
An unbiased estimator - good!
(2) what is the expected error for this
estimate?
 $E((M_n - \mu)^2) = E((M_n - E(M_n))^2)$
 $= Var(M_n)$
 $Var(M_n) = Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}\frac{N}{n^2}Var(X_i)$
 $= \frac{1}{n^2}(n Var(X_i)) = Var(X_i)$
 $a = \frac{\sigma^2}{n}$
As m take more samples, the error goes

down

Three are 2 Laws of Large Number.
Both essentially state that
"Mn converges to
$$E(X)$$
 as $n \rightarrow \infty$ "
The Weak Law of Large Numbers (WLLN)
Lim $P(|Mn - M_X| > E) = 0$
The sample mean "converges in probability"
to the mean.
The probability that the sample mean, Mn,
differs from the actual mean, Mx, by
more than some small value E
approaches zero as n approaches so
The event in guestion, $|M_h - M_X| > E$:
My-E M_X $M_X + E$
The probability of that event: $pdf \circ f$
 $M_h = M_X + E$

The sample mean becomes more accurate as we take more samples



To prove the WLLN, we start by
recognizing
$$E(M_n) = E(X_i) = \mu_X$$

and $Var(M_n) = \frac{1}{n} Var(X_i)$.

Then we need some more took, which are the probability bounds in Chapter 4.6.

leads to

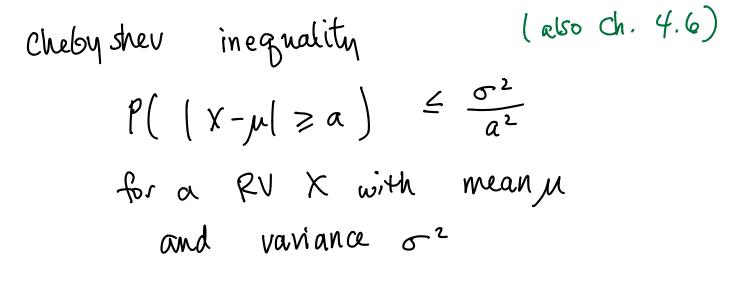
eads to

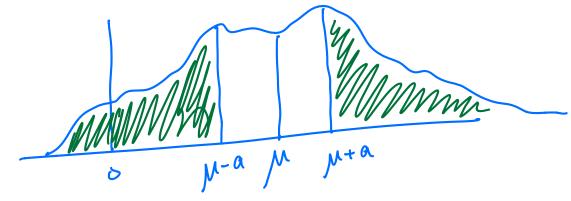
$$P(|M_n - \mu_x| > \varepsilon) = \frac{\sigma_x^2/n}{\varepsilon^2}$$
which, for a fixed ε ,
goes to zero as a goes to infinity
they says: An approximate answer to

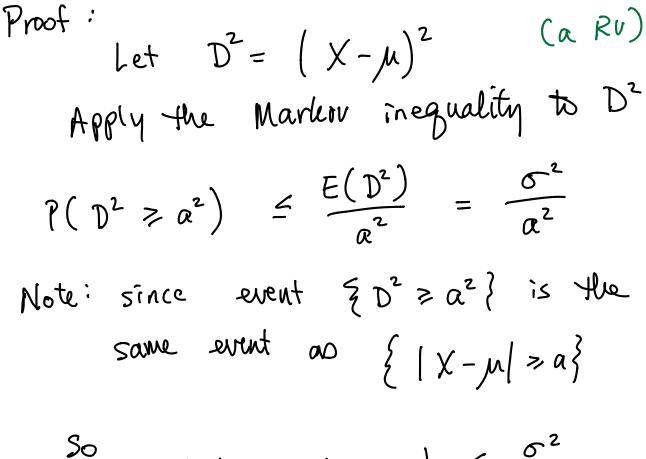
Tukey says: An approximate answer to the right question is more important than a precise answer to the wrong question.

Markov inequality (chapter 4.6)

$$\begin{array}{rcl}
P(X \ge a) &\leq & \underbrace{E(X)}{a} & \text{for any non-negative} \\
\hline P(X \ge a) &\leq & \underbrace{E(X)}{a} & for any non-negative} \\
\hline P(X \ge a) &\leq & \underbrace{E(X)}{a} & P(X \ge a) \leq & \underbrace{E(X)}{a} \\
\hline Proof: & & & & \\
\hline F(X) &= & \int_{a}^{\infty} t f_{X}(t) dt \\
\hline F(X) &= & \int_{a}^{\infty} t f_{X}(t) dt \\
& & & & \\
\hline & & &$$







 $P(|X - \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}$

Now we can apply this to the
sample mean
$$M_n$$
, that has
mean μ_x and variance $\frac{\pi^2}{n}$
(lesing chebyshev inequality to M_n ,
 $P(|M_n - \mu_x| \ge \varepsilon) = \frac{\sigma_x^2/n}{\varepsilon^2}$

As we take the limit of this as N->00, The right-hand side goes to zero