Two very useful uses for conditional probability
(1) Build complex model from simpler ones use the theorm of total probability
(2) make inferences (based on partial observation Bayes Rule of the experiment)

Theorem of total probability, for 2 RVS.

$$
\text { start with } \quad f_{x y}(x, y)=f_{x}(x \mid y) f_{y}(y)
$$

and integrate over y to get $f_{x}(x)$

$$
\begin{aligned}
& f_{x}(x)=\int_{-\infty}^{\infty} f_{x}(x \mid y) f_{y}(y) d y \\
& f_{y}(y)=\int_{-\infty}^{\infty} f_{y}(y \mid x) f_{x}(x) d x
\end{aligned}
$$

Recall we also had

$$
f_{x}(x)=\sum_{i=1}^{n} f_{x}\left(x \mid B_{i}\right) P\left(B_{i}\right) \quad \begin{gathered}
\text { if } B_{i}{ }^{\prime} s \\
\text { form } a \\
\text { partition }
\end{gathered}
$$

These are connected by considering the partition o $B i$ to be narrower and narrower slices of Y

Building probability model using conditional probability.

$$
\begin{aligned}
f_{x y}(x, y) & =f_{x}(x \mid y) f_{y}(y) \\
& =f_{y}(y \mid x) f_{x}(x)
\end{aligned}
$$

Example: X_{i} exponentially distributed
this is actually simpler than the the total prob, if you want to find the joint prob with mean ।
Y is normally distributed with
mean 0 and variance $x+1$
what is the joint $p d f$ of X and Y ?

$$
\begin{aligned}
& f_{x}(x)=e^{-x} \quad \text { for } \quad x>0 \\
& f_{y}(y \mid x)=\frac{1}{\sqrt{2 \pi(x+1)}} \exp \left[-\frac{y^{2}}{2(x+1)}\right] \quad \text { for } \quad \text { all } y
\end{aligned}
$$

so $f_{x y}(x, y)=\frac{e^{-x}}{\sqrt{2 \pi(x+1)}} \exp \left[-\frac{y^{2}}{2(x+1)}\right]$
for $x>0$
and $-\infty<y<\infty$
Now if you want $f_{y}(y)$, using the thenem of total probability, yr have to integrate over x. Details omitted

More examples of building models
sometimes, we know the RV world be well-modeled by a particular family of RVS (ie, binomial, exponential, Gaussian), but we don't know what the parameters should be (ie, $(n, p), \lambda,\left(\mu, \sigma^{2}\right)$).
we can assign a probability to the parameter.
Example: Y is Gaussian mean 0 , variance $x+1$
X is exponential mean 1
Example: y is Bernoulli parameter $p=x$
X is uniform $[0,1]$
Z is Geometric with same p as Y
Example: $\quad y=$ \# likes on social media (Poisson parameter $\alpha=x$)
X uniform $[3,5]$
(from an exam question a few years ago)
It is straight forward to form a joint model

$$
f_{x y}(x, y)=f_{y}(y \mid x) f_{x}(x)
$$

Moe examples of defining conditional model
x is the observed value at time t_{0}
y is the observed value at $i n e$, t,
Example: fraction of pizza remaining

$$
0 \leq x \leq 1 \quad, \quad 0 \leq y \leq 1
$$

and $y \leq x$
Example: A first measmement of anything A second measmement confirming the same thing
$X=$ underlying actual length (a RV)

$$
\begin{aligned}
y_{1} & =1^{\text {st }} \text { measurement } \\
& =x+\text { error } \\
y_{2} & =2^{\text {nd }} \text { measmement } \\
& =x+\text { different error }
\end{aligned}
$$

once you've constructed the joint model, it is straightforward to apply everything wive learned to compute quanties of interest, ex $\quad f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x, \quad f_{x}(x \mid y)=\frac{f_{x y}(x, y)}{f_{y}(y)}$ (when $f_{y}(y)>0$)

Example: building a moue complex model from simpler parts.
Video delivery. Suppose the quality of a under is rated on a mean Opinion Sone (mos) on a scale from 1 to 5 . (mos is abo used to rate the quality of voice calls.) (1 bad 15 excellent $)$ video that is stored on a server already has an upper bound on quality. Denote this X. when video is delivered over the internet, quality cannot improve, and often gets worse laue to packet loss, in adequate bandwidth, or recompression at a lower bandwidth).
Denote the received quality Y, with $Y \leq X$.
Suppose X is uniformly distributed between 3 and 5 and Y is uniformly distributed between $X / 2$ and X (a simple but plausible model)
Then $f_{x}(x)=\left\{\begin{array}{cl}1 / 2 & \text { when } 3 \leqslant x \leqslant 5 \\ 0 & \text { else }\end{array}\right.$

Inference - infer the probability of some (possibly unobservable) RV from another related RV that can be observed or measmed.
Use Banes Rule
Ex: the voltage across some inaccessible piece of a circuit based on a measmement of voltage across a measmable/acressible part of the same circuit.

$$
\begin{aligned}
\text { Recall } P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} & \text { if } P(B)>0 \\
\text { now: } f_{x}(x \mid y)=\frac{\left.f_{y}(y \mid x) f_{x} \mid x\right)}{f_{y}(y)} & \text { if } f_{y}(y)>0 \\
\text { also } & P(C \mid x)=\frac{P_{x}(x \mid c) P(C)}{P_{x}(x)}
\end{aligned} \begin{aligned}
& P(C \mid x) \text { for dicucte } \\
& R V
\end{aligned}
$$

This is very useful in cases where wive constructed the model using conditional probability.

Example Binary communications (examples $\begin{gathered}5,31 \text { and } 5,35) ~\end{gathered}$
X is input to channel $\quad P_{x}(x)= \begin{cases}1 / 3 & x=+1 \\ 2 / 3 & x=-1\end{cases}$
y is output, $y=x+N$
0 else
N is noise, Gaussian $N(0,1)$
X and N are independent
At the receiver, we receive Y and want to decide which X was sent.
ie, determine $f_{x}(x / y)$ and use it...

$$
\begin{aligned}
f_{y}(y)=f_{y}(y \mid x= & +1) P(x=+1) \\
& \left.+f_{y}|y| x=-1\right) P(x=-1)
\end{aligned}
$$

Given $x=+1, \quad y=1+N \Rightarrow \quad Y \sim N(1,1)$
Given $x=-1, \quad y=-1+N \Rightarrow y \sim N(-1,1)$
fy(y|x=+1)

$f_{y}(y)$
the left side in twice as high

Recall $\Phi(-1)$ is 0.158$)$, not very close to zew, so there is significant overlap.
whats the probability the signal was $X=+1$ if we receive the value y ?
use Bayes Rule

$$
\begin{aligned}
& \text { Bones Rule } \\
& \operatorname{Pax}_{x}(X=1 \mid y)=\frac{f_{y}(y \mid X=+1) P(X=+1)}{f_{y}(y)}
\end{aligned}
$$

use theorem of total probability to get $f_{y}(y)$

$$
=\frac{1 / 3 \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(y-1)^{2}}{2}\right)}{\frac{1}{3} \frac{1}{\sqrt{2} \pi} \exp \left(-{\frac{(y-1)^{2}}{2}}^{2}\right)+\frac{2}{3} \frac{1}{\sqrt{2} \pi} \exp \left(-\frac{(y+1)^{2}}{2}\right)}
$$

simplify: cancel $\exp \left(-\frac{(y-1)^{2}}{2}\right)$ from numerator + denominator

$$
=\frac{1}{1+2 \exp (-2 y)}=p_{x}(x=1 \mid y)
$$

Similarly, we can show

$$
\begin{aligned}
p_{x}(x=-1 \mid y) & =\frac{2 \exp (-2 y)}{1+2 \exp (-2 y)} \\
& =\frac{2}{2+\exp (2 y)} \\
& p_{x}(x \mid y)
\end{aligned}
$$

Choose $\hat{X}=+1$ when $P(x=1) y)>P(x=-1) y)$
choose $\hat{X}=-1$ when $P(X=1 \mid y)<P(X=-1 \mid y)$ maximum Aposteriori Probability (MAP) detector

