
 

Two very useful uses for conditional probability

Build complex models from simpler ones
use the theorem of total probability

makeinferences based on partial observation

Bayes Rule
of the experiment

Theorem of total probability for 2 RVs

start with fxy Ix y f tx ly fyly
and integrate over y to get f lx

fxlxt JF.ly y fyly dy
DO

or fyly fo fy ly Ix fx x DX

Recall we also had

fxlx fx x Bi P Bi
if Bi's
form a

partition
These are connected by considering the partitions

Bi to be narrower and narrower slices of Y



Building probability models using conditional
probability

fxylx.yjfxlxlyjfyTY s.fm'psuisffatunathhe

thm total prob iffylylx fx
you want tonetijing

Example X is exponentially distributed prob

with mean l

Y is normally distributed with
mean 0 and variance X 11

what is the joint pdf of X and Y value

f x e for X o

forfylylx y expL zY ally

so fxytx.us ear
exp L 1

for X O

and 00 ay soo

Now if you want fyly using the theorem

of total probability ym have to integrate
over x Details omitted



Monet of building models

sometimes we know the RV would be

well modeled by a particular family of RVs
ie binomial exponential Gaussian but we

don't know what the parameters should be
ie L n p X µ o

we can assign a probability to the parameter

Example Y is Gaussian mean 0 variance Xtl
X is exponential mean 1

Example Y is Bernoulli parameter pix

X is uniform o I

Z is Geometric with same pas Y

Example Y likes on social media
Poisson parameter a x

X uniform 3 5

from an exam question a few
years ago

It is straight forward to form a joint model

f y Ix y fy yl x f lx



Myre examples of defining conditional models

X is the observed value at time to

Y is the observed value at time t

Example fraction of pizza remaining

0 Ex El OE y E l
and y E X

Example A first measurement of anything
A second measurement confirming

the same thing
X underlying actual length a Rr

Y ISI measurement
X terror

Ya 2nd measurement
X different error

once you've constructed the joint model
it is straightforward to apply

everything

we've learned to compute qualities of interest

ex fy y fo f y Cx g dx fx Lxly 79
fy lywhenfyly o



Example building a more complex model
from simpler parts

Video delivery Suppose the quality of a video
is rated on a mean opinion score Mos
on a scale from 1 to S Mos is also used

1badto rate the quality of voice calls s excellent
video that is stored on a server already

has an upper bound on quality DenotethisX
when video is deliened over the Internet
quality cannot improve and often gets worse
due to packet loss inadequate bandwidth
or recompression at a lower bandwidth

Denote the received quality y with YEX
Suppose X is uniformly distributed between 3 and 5

and Y is uniformly distributed between xyz andX
a simple but plausible model

Then f x 12 when 3 EX E5

0 else Ros

and fy y 2
y es

use

2f y ix y fYx 5 75 ex
j0 else



Inference infer the probability of some

possibly unobservable RV from another
related RV that cantbe observed or measured

Use Bayes Rule
Ex the voltage across some inaccessible
piece of a circuit based on a measurement

of voltage across a measurable accessible
part of the same circuit

Recall p AIB PIBIAIMA if PIB 0

PCB

fnowif.ly yfxlYtfYtyfxhDiffylyTIyjalsopCc1x
fx for dbiu.tt

Px Ix R V

p dy fxtxk for continuous
Fxtx RV

This is very useful in cases where we've constructed

the model using conditional probability



Example Binary communications efa.YPYands.gs

21 1is niput b channel Pxlx
y

Y is output Y X N o else

N is noise Gaussian Nfo 1

X and N are independent

At the receiver we receive Y and want to
decide which was sent

ie determine fxtxly and use it

fy ly fy ylX i PIX _ti

fyly111 1 P x D
Given X 11 y it N Y NN bi
Given X I y I 1N y n Nti D

I l
t T

wfigghpt.tl

weight
1

a e
by put

sum to get fyly



fy ly the left side is
twice as high
as the right

an

y
l 1 I

Recall I l t is 0.158 not very close
to zero so there is significant overlap

what's the probability the signal was X 11

if we receive the value y
Use Bayes Rule

Px IX 1 y
fylylX t D

fy ly
use theorem of total probability to get fyly

43 fat exp ly

ftp.IIFfzexpf lytLI

simplify cancel exp f II from numerator 1
denominato

I

I 12 expfzy
PxHelly



Similarly we can show

PxlX ily 2exp
It 2expf2y
2

2x exptly

pxtxly
i

t

y

choose I 11 when Plkily P X Hy
choose I 1 when Plxelly 2 PCX Ily
Maximum Aposteriori Probability MAP

detector



Conditional Expectation chapter 5 7 2

Given an observed value of X

whatisE Yl
EIYlxt fjyf.ly xdyWtdhjpbenaygnsswemr
could just as well say

ELY Ix gtx for some X

what is Elylx g X
And glx is a random variable since

is a random variable

So we can take its expected value too

El El yl x

expf.int

I

expectation

wrty.ggjyfxylxy dxdy

jyfyly dy ELY



So ELY E E yl x Law of
iterated

Ex Ey Yl X expectation's

Also Ethly E E 1h14 x

ex El Yk E E y t x

This is extremely

powerful.ltaditimdappwahELyj

4 muff integrate integrated

usingiexpectahm.to D
integrate

f y ly Ix E yl X
integrate 1fx x Ely

E Y conditioned on X is a common RV

like say exponential then the top
integration becomes trivial



Example of why iterated expectations are

so powerful

Let be uniform on 0,1

Let 4 be uniform on o X

whatisE
method 1 the slow way
fx x I o Exel

0 else

uns p Eis
x FEIEnt

joint pdf
fxytx y fylylx f lx

tx 0cg Ex 4

4,7
else

marginal fyly f y x g dx dx
y

MX Ij buy for o yet

expectation ELY 1 fyly dy yhrydy
44 details omitted



Method 2 using iterated expectation
fyly

El Yl X E MYX
because the 0 Mz X

mean of a uniform RV on co X is 42

E El YlX E Hz Iz El X
k 4441

because the mean of X is 42
because it's a uniform RV on o I



Another example of iterated expectations

X and Y are uniformly distributed

on triangle formed by lo o Cbo Co 1

what is Elk

y steps
i

Ros
a Find f xly

yg
b Compute E Ny
c Compute E LX

x ELECNY

a Use chop and scale

For a given y X b uniform on o l y

f Lx ly Ey Axel xty.si
else

b El Xly If because Xly is uniform

c E X EL I ELZY

But by symmetry we can also say that

E X ELY

Combining ELY E EE ELY fELxtT
J


