Conditional probability when conditioning on a RV
(Chapter 5.7)
Recall from Topic Z, Chapters 3.4 and 4.2.2,
about conditioning on an event:

$$f_X(x|c) = \frac{P(x=x \ nc)}{P(c)}$$
 when $P(c)>0$
 $F_X(x|c) = \frac{P(x=x \ nc)}{P(c)}$ when $P(c)>0$
These are general for any event C.
when C is an event that depends on X,
 $f_X(x|c) = \begin{cases} f_X(x) \\ P(c) \end{bmatrix}$ when $x \in C$
 $p(c)$ and $P(c)>0$
C else
This can be directly applied to joint RUS
 $e_X: F_{XY}(x,y|c) = \frac{P(X=x, Y \le y \ and c)}{P(c)}$
But what if the event $C = \{X=x\},$
and X is a continuous RV?
The basic concept is:
Given a sample (i.e., a specific outcome),
and yon know $X=x$, what's $f_Y(y|X=x)$?

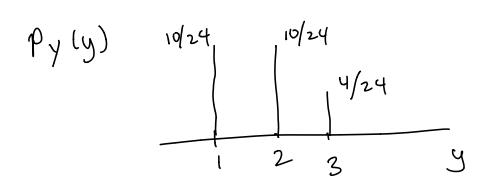
Let's start with a discrete example, to find a conditional pmf px (x/y)

This
$$x = 1$$
 2 3
is $1 = \frac{1}{24} + \frac{1}{24} + \frac{1}{24}$
 $\frac{1}{24} + \frac{1}{24} + \frac{1}{24}$

To find
$$Py(y)$$
:
 $x = \frac{1}{2} \frac{2}{3}$
this is 1 $\frac{1}{24} \frac{4}{24} \frac{1}{24}$
the same 2 $\frac{2}{24} \frac{3}{24} \frac{1}{24}$
 $Pxy(x,y) = \frac{3}{24} \frac{2}{24} \frac{1}{24}$
 $\frac{1}{24} \frac{4}{24} \frac{1}{24} \frac{1}{24}$
 $\frac{1}{10/24} \frac{1}{10/24} \frac{4}{124}$

$$\frac{\text{marginal Pmf}}{\text{Py}(y)} = \sum_{\gamma} \text{Pxy}(\chi, y)$$

sum down each column



To find
$$P_{X}(\chi|y)$$
: $P_{X}(\chi|y) = P_{Xy}(\chi,y)$
This is 1 $Y_{24} Y_{24} Y_{24}$ This is a
still 2 $Y_{24} Y_{24} Y_{24}$ function of
 $P_{Xy}(\chi)$ 3 $Y_{24} Y_{24} Y_{24}$ function of
 $P_{Xy}(\chi)$ 3 $Y_{24} Y_{24} Y_{24}$ both χ and y .
 $y Y_{24} Y_{24} Y_{24}$ general
definition of
conditional
For a specific value of Y , $p_{X}(\chi|y)$ is a PMF.
So $\sum_{\chi} p_{X}(\chi|y) = 1$
but $\sum_{\chi} P_{X}(\chi|y) = 1$
but $\sum_{\chi} P_{X}(\chi|y)$ could be anything
 $P_{X}(\chi|y)$ χ 1 $\sum_{\chi} 3$ pmf
(not $P_{Xy}(\chi,y)$) 1 $Y_{10} Y_{10} Y_{4} P_{X}(\chi|y)$
 $2 Y_{10} Y_{10} Y_{4} P_{X}(\chi|y)$
 $2 Y_{10} Y_{10} Y_{4} P_{X}(\chi|y)$
 $2 Y_{10} Y_{10} Y_{4} P_{X}(\chi|y)$

Conditioning on
$$\{x = \chi\}$$
 (or $\{y = y\}$) when
 X (or Y) is a continuous RV.
 $P(X = \chi) = 0$ for a continuous RV.
punch line $f_X(\chi|y) = \frac{f_{XY}(\chi,y)}{f_Y(y)}$ if
 $f_Y(y) = \frac{f_{XY}(\chi,y)}{f_Y(y)}$ if
 $f_X(\chi) = \frac{f_{XY}(\chi,\chi)}{f_{XY}(\chi,y)} = \frac{f_{XY}(\chi,\chi)}{f_{XY}(\chi,\chi)}$ is a small incument
 Me can say similar things about
 $\Delta_Y f_{XY}(\chi,y) = \frac{f_{XY}(\chi,\chi)}{f_{XY}(\chi,\chi)} = \frac{f_{XY}(\chi,\chi$

If we define A to be a slice of X,
and B to be a slice of Y

$$A = \{ y \in X \leq y + \Delta_x \}$$

 $B = \{ y \in Y \leq y + \Delta_y \}$
then $A_x f_x(x|y) \approx \frac{p(A \cap B)}{p(B)} = p(A|B)$

and
$$P(A \cap B) \approx f_{xy}(x,y) \Delta_x \Delta_y$$

 $P(A) \approx f_x(x) \Delta_x$
 $P(B) \approx f_y(y) \Delta_y$

Combining:

$$A_{x} f_{x} (x|y) \approx \frac{f_{xy} (x,y) \Delta_{x} \Delta_{y}}{f_{y} (y) \Delta_{y}}$$
(the probability X lies
in a small slice near x,
given that y lies in a small
slice near y)

$$f_{x} (x|y) = \frac{f_{xy} (x,y)}{f_{y} (y)}$$
(the probability X and Y lie
in a small box near (x,y),
divided by the probability Y
lies in a small
slice near y)

$$f_{x} (x|y) = \frac{f_{xy} (x,y)}{f_{y} (y)}$$
Note: this has not been an exact proof
by any stretch of the imagination, bat
it is meant to be conceptually useful

Conditional pdf definitions. $f_{x}(x|y) = \frac{f_{xy}(x,y)}{f_{y}(y)} \quad ;f \quad f_{y}(y) > 0$ $f_{y}(y|x) = \frac{f_{xy}(x,y)}{f_{x}(x)} \quad ;f \quad f_{x}(x) > 0$

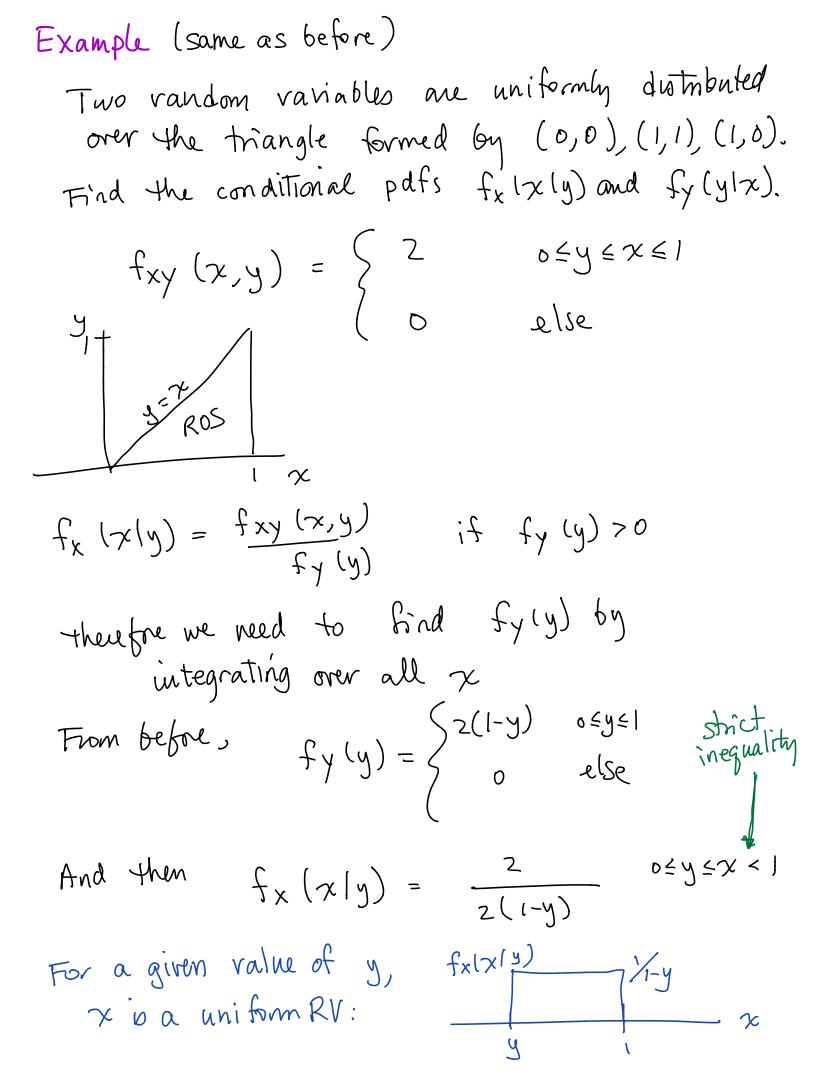
Note:
$$\int_{-\infty}^{\infty} f_x(x/y) dx = 1$$

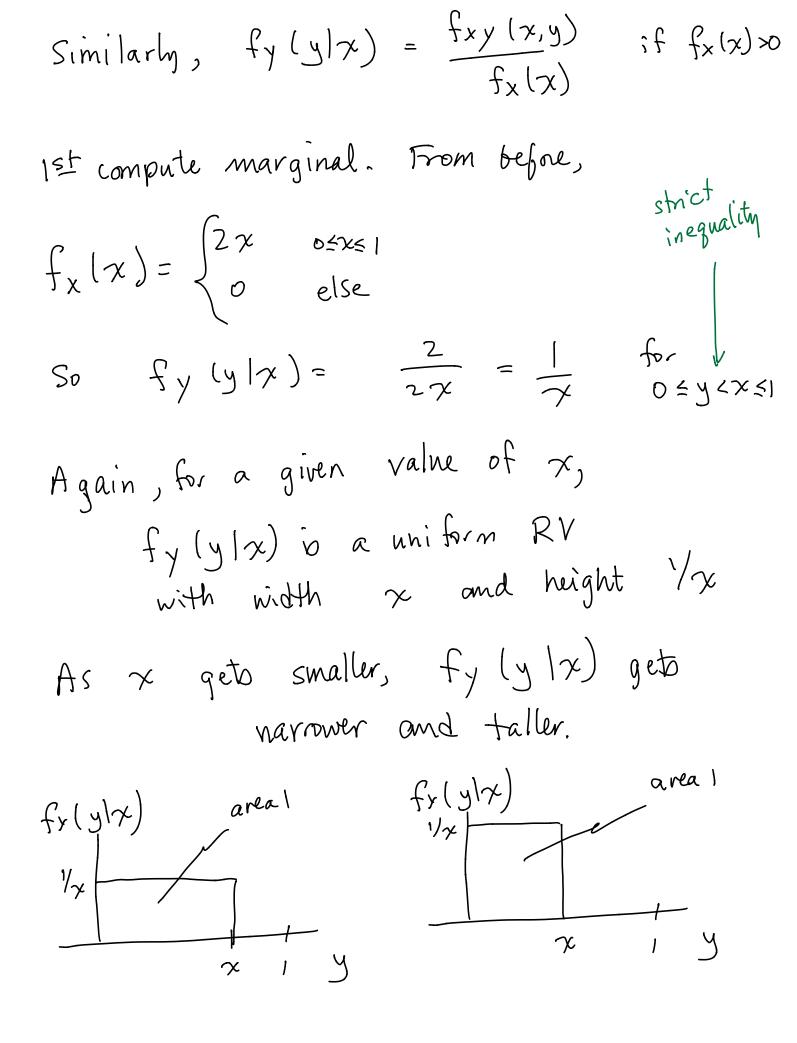
but $\int_{-\infty}^{\infty} f_x(x/y) dy$ could be
 $\int_{-\infty}^{\infty} f_x(x/y) dy$ could be
any thing

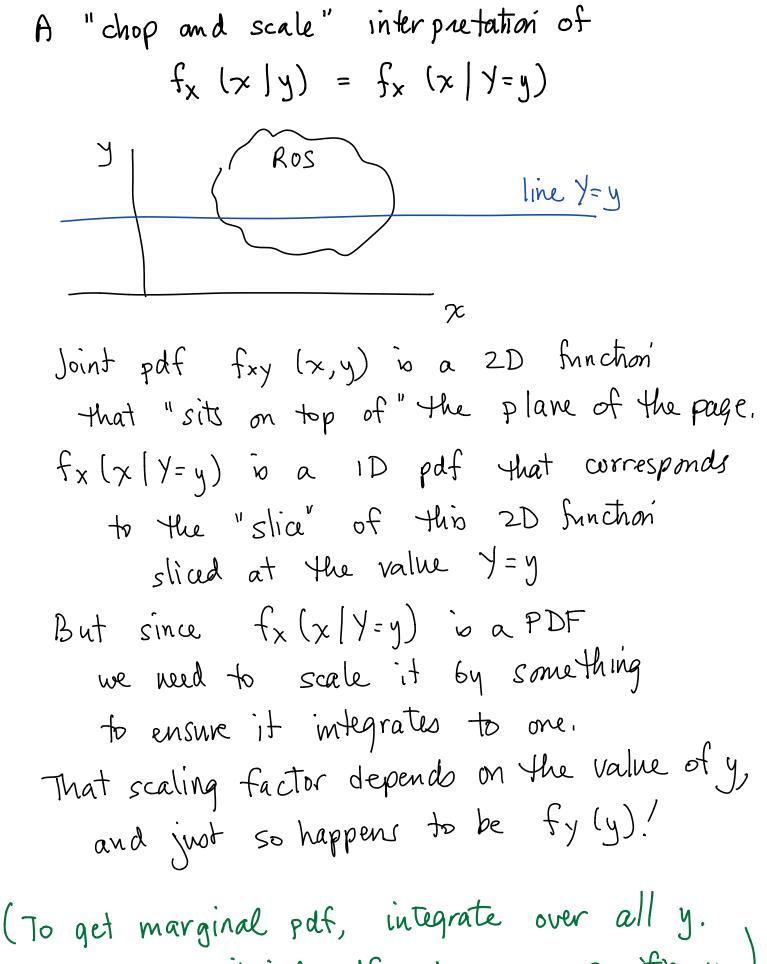
For a specific value of y, $f_x(x/y)$ is a pdf. But $f_x(x/y)$ does depend on both x and y.

The Ros for $f_x(x|y)$ is the intersection of the Ros of fxy(x,y) and fy(y)

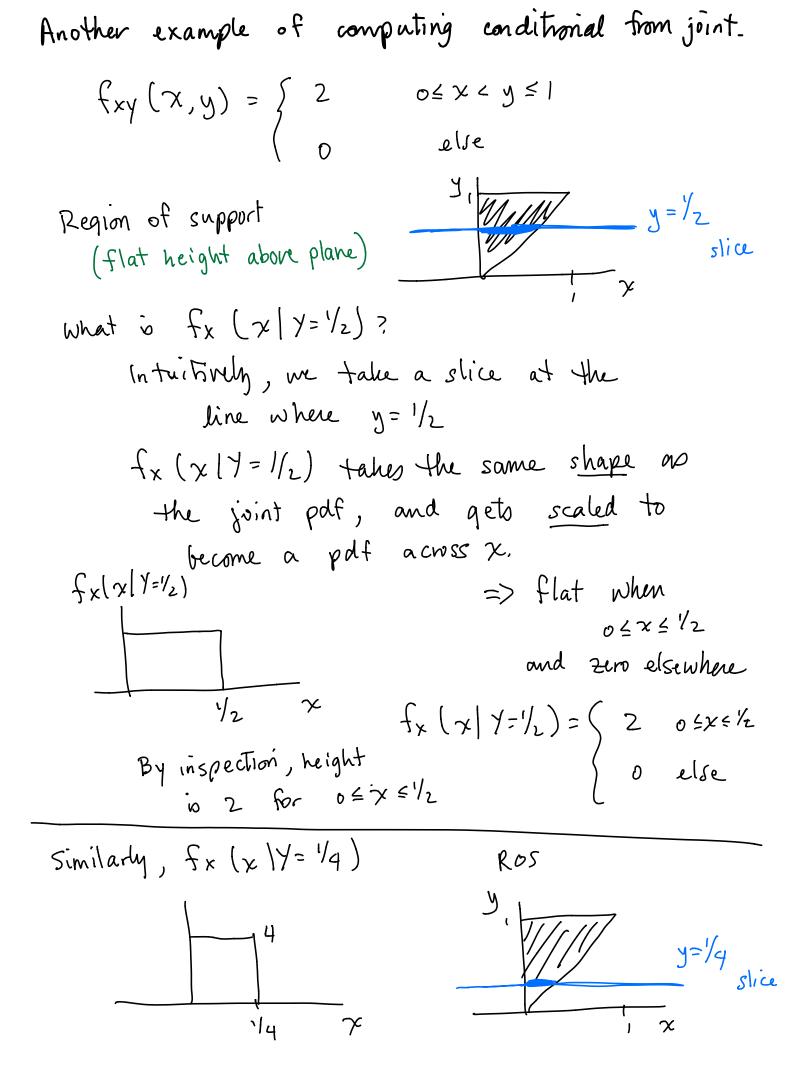
Always indicate your Ros!







To get conditional pdf, choose one specific y.)



Interrelationships:
Joint Imarginal
DF
$$F_{xy}(x,y) \xrightarrow{y \to \infty} F_{x}(x)$$

 $\int \frac{\partial^{2}}{\partial x \partial y} \xrightarrow{y \to \infty} F_{x}(x)$
 $\int \frac{\partial^{2}}{\partial x \partial y} \xrightarrow{y \to \infty} F_{x}(x)$
PDF $f_{xy}(x,y) \xrightarrow{integrate} f_{x}(x)$
Joint $f_{xy}(x,y) \xrightarrow{integrate} f_{x}(x)$ or $f_{y}(y)$
need both $f_{y}(y|x)$ or $f_{x}(x|y)$
need both $f_{x}(x,y)$ or $f_{x}(x|y)$
need both $f_{x}(x,y) = f_{x}(x|y)f_{y}(y) = f_{y}(y|x)f_{x}(x)$
to we can necessarily for $f_{x}(x|y)$
we can necessarily for $f_{x}(x|y)$
 $f_{xy}(x,y) = f_{x}(x|y)f_{y}(y) = f_{y}(y|x)f_{x}(x)$

Conditional probability and independence
From the definition of conditional pdf,

$$f_x(x|y) = \frac{f_{xy}(x,y)}{f_{y}(y)}$$
 if $f_y(y) > 0$

So
$$f_{xy}(x,y) = f_x(x|y) f_y(y)$$

what is $f_x(x|y)$ if X and Y are
independent?

$$f_{xy}(x,y) = f_{x}(x)f_{y}(y)$$
so $f_{x}(x|y) = f_{x}(x)$ provided
 $f_{y}(y) > 0$.
As before, independence simplifies
computation
Similarly $f_{y}(y|x) = f_{y}(y)$ if $f_{x}(x) > 0$
and X and Y are
independent