Expeded values of 2RVs and Joint moments
(Chapter 5,6)
With 2 random variables, we care how
then vary together.
Definition
Let
$$2 = g(X,Y)$$
 be any function of X and Y
Then $E(2) = \int_{-\infty}^{\infty} \int_{0}^{\infty} g(x,y) f(x,y) dy dx$
or $E(2) = \int_{-\infty}^{\infty} \int_{0}^{\infty} g(x,y) f(x,y) dy dx$
or $E(2) = \int_{-\infty}^{\infty} Z g(x,y) f(x,y) dy dx$
 $E(2) = \sum_{x \neq y}^{\infty} Z g(x,y) f(x,y) dy dx$
Some useful functions $Z = g(X,Y)$
 $Z = X$
 $Z = X, (product of 2 RVs)$
 $Z = X, (product of 2 RVs)$
 $Z = X, (product of 2 revs)$
 $Z = X, (x) g_{2}(Y)$ (product of 2 separable
functions)
 $Z = X^{2} y^{3}$ (a joint moment of X and Y)
(example $Z = X^{2}Y^{2}$)
 $Z = (X - \mu_{X})^{2} (Y - \mu_{Y})^{3}$ (a joint centralized
moment of X and Y)

Example:
$$2 = X + Y$$

Easy to show that $E(2) = E(X) + E(Y)$
proof: $E(2) = E(X+Y) = \iint (x+y) f_{XY}(x,y) dx dy$
 $= \iint x f_{XY}(x,y) dy dx + \iint y f_{XY}(x,y) dx dy$
 $= \int x f_{X}(x) dx + \iint y f_{Y}(y) dy$
 $= E(X) + E(Y)$

Also,
$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$$

If X and Y are independent, and
$$Z = g(X,Y)$$

can be decomposed into $Z = g_1(X)g_2(Y)$
then $E(Z) = E(g_1(X))E(g_2(Y))$
In particular, $E(XY) = E(X) E(Y)$
 $proof E(g_1(X)g_2(Y)) = \int \int g_1(X)g_2(Y)f_{XY}(X,Y)dydx$
 $= \left[\int g_1(X)f_X(X)dx\right] \left[\int g_2(Y)f_{Y}(Y)dy\right]$
 $= E(g_1(X))E(g_2(Y))$
Example: $Z = exp(X)Y^5$
 $E(Z) = E(exp(X))E(Y^5)$
if and only if X and Y are independent

Joint momento of X and Y

Recall: $E(x^{+})$ is the nth moment of X $E((x - \mu_{x})^{n})$ is the nth central moment GF X

Joint moments $E(x^{n} y^{m})$

Joint central moments $E[(X - \mu_X)^n (Y - \mu_Y)^n]$ These summarize information about the joint behavior of X and Y The more joint moments we know, the more we know about X and Y jointly - Because while the joint PDF tells us

everything about this in practical situations if may be difficult to obtain or estimate

Correlation $E(XY) = r_{XY}$ n=1 and m=1If E(XY) = D, X and Y are said to be <u>orthogonal</u> but they may or may not be <u>uncorrelated</u>: **Covariance** $E((X - \mu_X)(Y - \mu_Y)) = CoV(X,Y) = C_{XY}$ If CoV(X,Y) = O, X and Y are said to be <u>uncorrelated</u>

Correlation c	oefficient		
$P_{XY} = \frac{\text{cov}(x)}{\sigma_X}$		(x) VAR(y) =	Cxy ox oy
Note −1 ≤ f	$xy \leq 1$		
	Pxy =0 Pxy >0 Pxy <0	nn correlated positively correl negatively corr	

Be careful with the English terminology. These are mathematical definitions. When people, papers, and the press talk about the correlation, they often mean the correlation coefficient.

O: Why covariance and not correlation? A: Sometimes you don't care about the mean. Exi in a circuit, amplifiers are often given a large DC voltage (bias) so they'll operate as desired. The information signal is the variation about the bias. So covariance is more meaningful here. Q: why correlation coefficient and not covariance? A: No units! The lack of units can make the correlation coefficient more interpretable.

Properties of correlation, covariance, and
correlation coefficient for general RVs Xandy
Shortcut for computing covariance
recall Var(X) =
$$E((X - E(X)) = E(X^2) - E(X)^2$$

Cov (X,Y) = $E(XY) - E(X)E(Y)$
proof = $E((X - E(X) (Y - E(Y)) = E(XY - E(X))Y - XE(Y))$
= $E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$
More properties
Cov (X,X) = Var(X)
Cov (X,Y) = Cov (Y,X)
Var(X+Y) = Cov (Y,X)
Var(X+Y) = E((X+Y)^2) - E(X+Y)^2
= $E[X^2 + 2XY + Y^2] - (E(X) + E(Y))^2$
= $E(X^1) + 2E(XY) + E(Y^2)$
= $E(X^1) - E(X)^2 + 2[E(XY) - E(X)]^2$
= $Var(X) + Var(Y) + 2 Cov (X,Y)$
Cov (aX+b, cY+d) = ac Cov(X,Y)
Cov (aX+b, cY+d) = ac Cov(X,Y)
Cov (X+Y, u+v) = Cov(X,u) + Cov(X,v) + Cov(Y,v)
= $Cov(Y,u) + Cov(Y,v)$
Cov (aX+b, cY+d) = ac Cov(X,Y)
Cov (X+Y, u+v) = Cov(X,u) + Cov(Y,v) + Cov(Y,

$$|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}$$

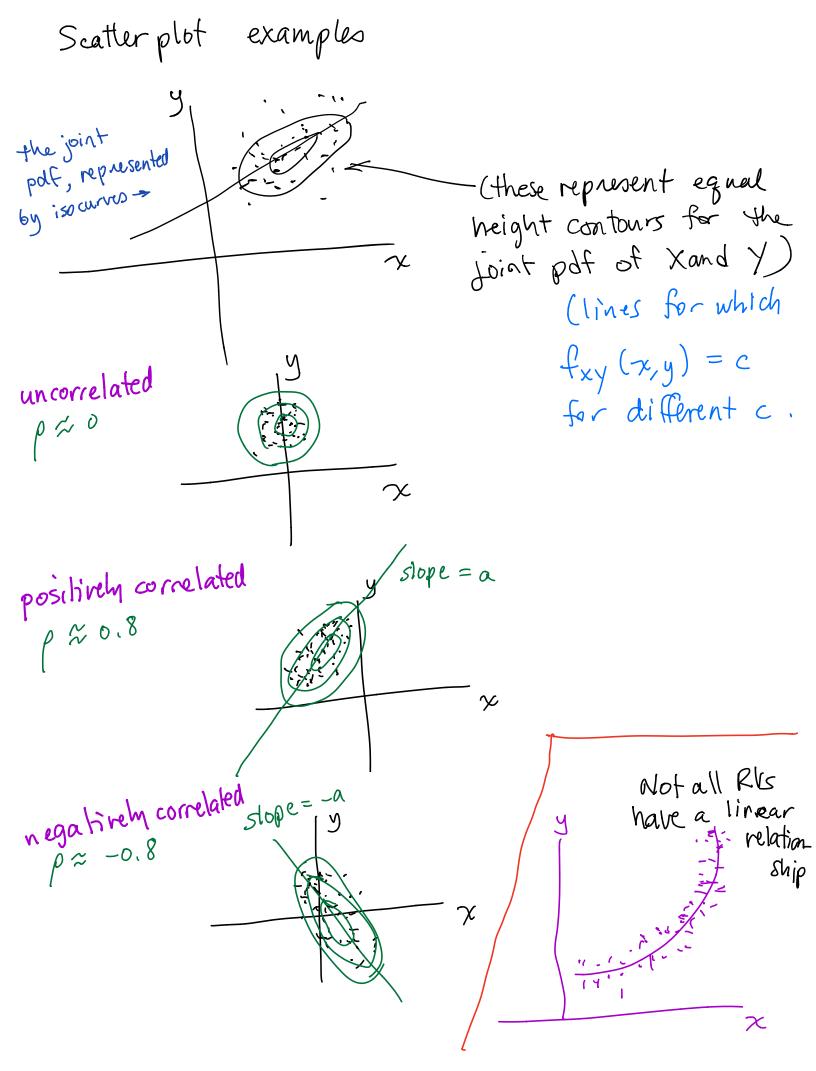
 $|Cov(X,Y)| \leq \sqrt{Var(X)Var(Y)}$

Interpreting the correlation coefficient.
-indicated the strength of the linear
relationship between X and Y
Suppose yon want to estimate a RV Y
from another RV X using a linear
ulation ship.
Model:
$$Y = aX + b + N$$
 The woise PV N
model: $Y = aX + b + N$ The woise PV N
model: $Y = aX + b + N$ The woise PV N
may not be
may not be
may not be
may not be
(A) = E(X) = M, Var(X) = o² of exact
interrelationship
E(Y) = E(aX + b + N) = a\mu + b + E(N) Assume
(aX) + var(N) + 2Cov(aX, N)
= a²o² + o²
E(XY) = E(aX² + bX + XN)
= a E(X²) + b\mu
and since $\sigma^{2} = E(X2) - \mu^{2}$,
E(XY) = $a\sigma^{2} + a\mu^{2} + b\mu$
and, finally, $P_{XY} = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sigma \sqrt{a^{2}\sigma^{2} + \sigma_{y}^{-1}}}$

simplifying

$$f_{XY} = \frac{a\sigma^2 + a\mu^2 + b\mu - \mu(a\mu + b)}{\sigma \sqrt{a^2 \sigma^2 + \sigma_y^2}}$$

 $= \frac{a\sigma}{\sqrt{a^2 \sigma^2 + \sigma_y^2}}$ depends on σ_y^2
Interpretation: f_{XY} describes how effective the
linear relation ship is
If $Y \approx aX + b$ is an accurate approximation,
then σ_y^2 is small and
 $f_{XY} \Rightarrow \frac{a\sigma}{|a|\sigma} = \pm 1$ as $\sigma_y^2 \Rightarrow o$
If $Y \approx aX + b$ is less accurate, σ_y^2 larger,
then $f_{XY} \approx \frac{a\sigma}{\sigma_y} \Rightarrow 0$ as σ_y^2 grows
If $p=0$, there is no linear relationship between X+Y.
if $p=\pm 1$ there is a direct linear relationship



If X and Y are independent, then
$$Cor(X|Y) = 0$$

why? easy to prove ...
Be careful, the vereise is not always time.
If $Cov(X|Y) = 0$, X and Y may not be
independent!

Example: un correlated but Not independent.
example 5.27

$$\Theta$$
 is a uniformly distributed angle, $(0, 277)$
 $X = \cos \Theta$ (X,Y) are on the
 $Y = \sin \Theta$ (x,y) are on the
huit circle
Are X and Y independent?
uncorrelated?
To show independence, you must be able to show
fxy $(x,y) = f_X(x) f_Y(y)$ for all x and y.
But note that the region of support for
fxy (x,y) is on the unit circle.
So we know immediately that they are Not
independent, because a circle is not in product form
What is $CoV(X,Y)$? $= E(XY) - E(X) E(Y)$
 $= E(XY)$ because $E(X) = O$
 $E[XY] = E(\cos \Theta \sin \Theta) = E(\frac{\sin 2\Theta}{2})$
 $= \frac{1}{2} \frac{1}{2\pi} \int_{0}^{2\pi} \sin 2\Theta d\Theta = O$
 $\Rightarrow X and Y are
uncorrelated but
not independent!$

Summary for independent RUS
Independent RUS are always uncorrelated
Uncorrelated RUS may not be independent
Uncorrelated joint Gaussian RUS are independent
Independent RUS ONLY

$$E[g_1(x) g_2(y)] = E[g_1(x)] E[g_2(x)]$$

 $rxy = E[XY] = E[x]E[Y]$
 $Cxy = CoV(X,Y) = 0$
 $Var(X+Y) = Var(X) + Var(Y)$ crossferm
and of course
 $fx_1(x,y) = f_x(x)$ (next topic...)