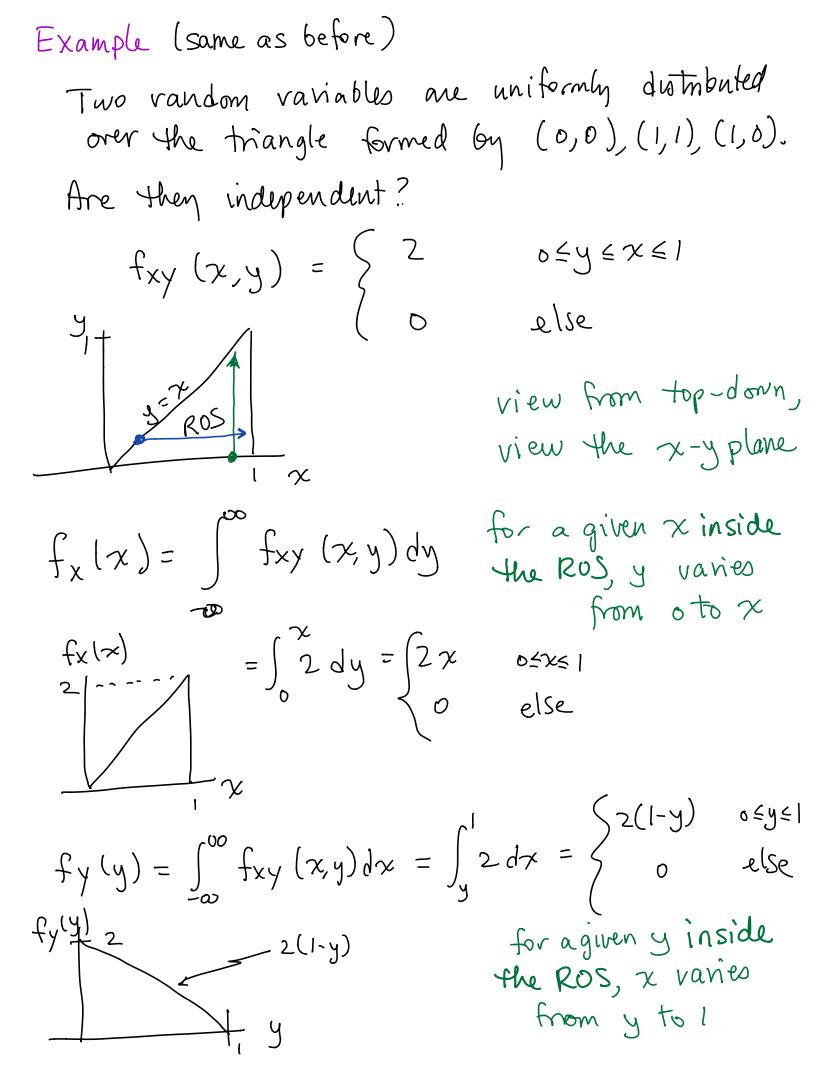
Independence of RVs (Chapter 5.5)
Recall: independence of events:
Events A and B are independent
if and only if
$$P(A \cap B) = P(A)P(B)$$
.
Extend to Z RVs, either through PMF or CDF.
Random variables X and Y are independent
if and only if $F_{XY}(x,y) = F_{X}(x)F_{Y}(y)$
for all x and y .
Recall that $F_{XY}(x,y) = P(X \leq x \text{ and } Y \leq y)$
and $F_{X}(x)F_{Y}(y) = P(X \leq x \text{ and } Y \leq y)$
so this is really saying that the
events $\{X \leq x\}$ and $\{Y \leq y\}$ are
independent for any x and any y .
From this, it is easy to see that
independence occurs if
 $f_{XY}(x,y) = f_{X}(x)f_{Y}(y)$ for all
 $f_{X}(y)$

what good is independence?
Simplifying your model
If you are given
$$f_X(x)$$
 and $f_y(y)$
and X and Y are independent
then simplify $f_{xy}(x,y) = f_x(x) f_y(y)$.
If you are given $f_{x,y}(x,y)$ and
asked if X and Y are independent,
then you need to show
 $f_{x,y}(x,y) = f_x(x) f_y(y)$ for all
 x and y .
One counter -example is sufficient to
show the lack of independence
Recall: Given $f_{xy}(x,y)$, compute marginals:
 $f_x(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) dy$
 $f_y(y) = \int_{-\infty}^{\infty} f_{xy}(x,y) dy$.
Independence is the only situation in
which, given $f_{x,y}(x,y)$ (marginals do not tell
the joints $f_{xy}(x,y)$ (marginals do not tell
the full story otherwise)



Some now examples

$$f_{xy}(x,y) = \begin{cases} 4xy & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1} 4xy \, dy = \frac{4xy^{2}}{2} \int_{0}^{1} = \int_{0}^{2x} 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{y}(y) = \int_{0}^{1} 4xy \, dx = \begin{cases} 2y & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x)f_{y}(y) = (2x)(2y) \quad \text{when } 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{xy}(x,y) = \begin{cases} 24xy & 0 \le x, 0 \le y, x + y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{xy}(x,y) = \begin{cases} 24xy & 0 \le x, 0 \le y, x + y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-x} 2^{4}xy \, dy = \begin{cases} 12x(1-x)^{2} & 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{y}(y) = \int_{0}^{1-y} 2^{4}xy \, dy = \begin{cases} 12x(1-x)^{2} & 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{y}(y) = \int_{0}^{1-y} 2^{4}xy \, dy = \begin{cases} 12x(1-x)^{2} & 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{y}(y) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{y}(x,y) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{x}(x) = \int_{0}^{1-y} 2^{4}xy \, dx = \begin{cases} 12y(1-y)^{2} & 0 \le y \le 1 \\ 0 & \text{else} \end{cases}$$

$$f_{xy}(x,y) = \begin{cases} 2e^{-x}e^{-y} & 0 \le y \le x < \infty \\ 0 & else \end{cases}$$
Ros is triangular, so
NoT independent.

$$f_{x}(x) = 2e^{-x}(1-e^{-x}) \xrightarrow{x>0} = \sum \frac{1}{1} \frac{1}{1$$