Independence of RVs (chapter 5.5)
Recall: independence of events:
Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Extend to $2 R V s$, either through PMF or CDF.
Random variables X and Y are independent if and only if $F_{x y}(x, y)=F_{x}(x) F_{y}(y)$ for all x and y.
Recall that $F_{x y}(x, y)=P(x \leq x$ and $y \leq y)$ and $F_{x}(x) F_{y}(y)=P(x \leqslant x) P(Y \leqslant y)$
so this is rally saying that the events $\{x \leq x\}$ and $\{y \leq y\}$ are independent for any x and any y.
From this, it is easy to see that independence occurs if

$$
p_{x y}(x, y)=p_{x}(x) p_{y}(y) f_{x}, \text { all }
$$

and $f_{x y}(x, y)=f_{x}(x) f_{y}(y) \quad$ for all
and that either of these conditions leads to independence

What good is independence?
Simplifying your model
If yon are given $f_{x}(x)$ and $f_{y}(y)$ and X and Y are independent then simplify $f_{x y}(x, y)=f_{x}(x) f_{y}(y)$.

If yon are given $f_{x y}(x, y)$ and asked if x and y are independent, then you need to show

$$
f_{x y}(x, y)=f_{x}(x) f_{y}(y) \text { for all } \quad x \text { and }
$$

One counter -example is sufficient to show the lack of independence
Recall: Given fay (x, y), comp ute marginal:

$$
\begin{aligned}
& f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y \\
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x
\end{aligned}
$$

Independence is the only situation in which, given $f_{x}(x)$ and $f_{y}(y)$, yon can recover the joint $f_{x y}(x, y)$ (marginals do not tell $\begin{gathered}\text { the full story otherwise }\end{gathered}$

Example (same as before)
Two random variables are uniformly distributed over the triangle formed by $(0,0),(1,1),(1,0)$. Are then independent?

$$
f_{x y}(x, y)= \begin{cases}2 & 0 \leq y \leq x \leqslant 1 \\ 0 & \text { else }\end{cases}
$$

view from top -down, view the x-yplane

$$
f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y
$$

for a given x inside the ROS, y varies from o to x

$$
=\int_{0}^{x} 2 d y=\left\{\begin{array}{c}
2 x \\
0
\end{array}\right.
$$ $0 \leq x \leq 1$ else

$$
f_{y}(y)=\int_{-\infty}^{100} f_{x y}(x, y) d x=\int_{y}^{1} 2 d x=\left\{\begin{array}{cc}
2(1-y) & 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

for a given y inside the ROS, x varies from y to 1

Are X and Y independent?
does $f_{x y}(x, y)=f_{x}(x) f_{y}(y)$ for all randy?

$$
\begin{aligned}
f_{x}(x) f_{y}(y) & =(2 x) 2(1-y) \text { for } 0 \leq x \leq 1 \\
& \neq 2 \leq y \leq 1
\end{aligned}
$$

so No, not independent
Note: the ROS's must also match, which then dort here. One io triangular, the other square
If $f_{x y}(x, y)$ has a ROS that is not in "product form", then X and Y cannot be independent
product form: A region can be written as the intersection of an event A that depends only on X and an event B that depends only on y

$$
\begin{gathered}
\text { An example } \\
\text { of product } \\
\text { form }
\end{gathered} \rightarrow
$$

An event in

Some more examples

$$
f_{x y}(x, y)=\left\{\begin{array}{cc}
24 x y & 0 \leq x, 0 \leq y, x+y \leqslant 1 \\
0 & \text { else }
\end{array}\right.
$$

$$
f_{x}(x)=\int_{0}^{1-x} 24 x y d y=\left\{\begin{array}{cl}
12 x(1-x)^{2} & 0 \leq x \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

$$
f_{y}(y)=\int_{0}^{1-y} 24 x y d x=\left\{\begin{array}{cl}
12 y(1-y)^{2} & 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

and clean $f_{x y}(x, y) \neq f_{x}(x) f_{y}(y)$ NOT
\rightarrow the triangular ROS changes every thing

$$
\begin{aligned}
& f_{x y}(x, y)=\left\{\begin{array}{cl}
4 x y & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right. \\
& \begin{array}{l}
f_{x}(x)=\int_{0}^{1} 4 x y d y=\left.\frac{4 x y^{2}}{2}\right|_{0} ^{1}=\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 1 \\
0 & \text { else }
\end{array}\right. \\
f_{y}(y)=\int_{0}^{1} 4 x y d x=\left\{\begin{array}{cl}
2 y & 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right.
\end{array} \\
& f_{x}(x) f_{y}(y)=(2 x)(2 y) \text { when } 0 \leq x \leq 1 \\
& =f_{x y}(x, y) \Rightarrow Y E S \text { independent }
\end{aligned}
$$

$$
f_{x y}(x, y)=\left\{\begin{array}{cl}
2 e^{-x} e^{-y} & 0 \leq y \leq x<\infty \\
0 & \text { else }
\end{array}\right.
$$

ROS is triangular, so NOT independent.

We can ibo compente

$$
\begin{aligned}
& f_{x}(x)=2 e^{-x}\left(1-e^{-x}\right) \quad x>0 \\
& f_{y}(y)=2 e^{-2 y} \quad y>0
\end{aligned} \quad \Rightarrow \frac{N O T}{\text { independent }}
$$

A CDF example

$$
\frac{F \text { example }}{F_{x y}(x, y)}=\left\{\begin{array}{cc}
\left(1-e^{-a x}\right)\left(1-e^{-b y}\right) & x \geqslant 0 \\
0 & \text { else } \\
0 &
\end{array}\right.
$$

YES Independent, since

$$
\begin{aligned}
& \text { Independent, since } \\
& F_{x}(x)=\lim _{y \rightarrow \infty} F_{x y}(x, y)=1-e^{-a x} \quad x \geqslant 0 \\
& F_{y}(y)=\lim _{x \rightarrow \infty} F_{x y}(x, y)=1-e^{-b y} \quad y \geqslant 0
\end{aligned}
$$

If X and Y are independent, then $g_{1}(x)$ and $g_{2}(y)$ are also independent

