overview of "Two Random Variables"

Two RVs: Joint probability mass function

$$
P_{x y}(x, y)=P(x=x, y=y)
$$

Sample space

$$
s_{x y}=\left\{(x, y): p_{x y}(x, y)>0\right\}
$$

(the set of pairs (x, y) which have nonzero probability.)
Three ways to represent apmf: list, table, graph
Example of a discrete pair of random variables
Test 2 IDs in sequence.
Each can be acceptable (a) or rejected (r).
Assume $P(a)=0.9$, and
test outcomes are mdependent
Let $x=\#$ acceptable circuits
$y=$ \# successful tests before 1 ${ }^{\frac{s t}{}}$ rejection

$$
\begin{aligned}
& S=\{r r, r a, a r, a a\} \\
& S_{x y}=\left\{\begin{array}{c}
(x, y):\left(\begin{array}{c}
(0,0) \\
r r
\end{array} \underset{r a}{(1,0)}, \underset{\text { ar }}{(1,1)} \underset{\text { ar }}{(2,2)}\right.
\end{array}\right. \\
& S_{x}=\{0,1,2\} \quad S_{y}=\{0,1,2\}
\end{aligned}
$$

mapping the outcome ω :

ω	x	y	$p(\omega)$
$r r$	0	0	$(0.1)^{2}$
ra	1	0	$(0.1)(0.9)$
ar	1	1	$(0.9)(0.1)$
aa	2	2	$(0.9)^{2}$

Joint PMF as a list/formula

$$
P_{x y}(x, y)=\left\{\begin{array}{cc}
0.01 & x=0, y=0 \\
0.09 & x=1, y=0 \\
0.09 & x=1, y=1 \\
0.81 & x=2, y=2 \\
0 & \text { else }
\end{array}\right.
$$

Joint PMF as a table

y	0	1	2
0	0.01	-	-
1	0.09	0.09	-
2	-	-	0.81

Joint PMF as fully labeled graph

Computing probabilities from Joint PMF
All elements of Say are disjoint, so

$$
P(B)=\sum_{(x, y) \in B} p_{x y}(x, y)
$$

Marginal mf

$$
p_{x}(x)=P(x=x)
$$ nothing

$$
=P(X=x \text { and } Y=\text { anything })^{0}
$$ of y

$$
\begin{aligned}
& =\sum_{\substack{\text { all } \\
\text { possible }}} p_{x y}(x, y) \\
& y)=\sum_{\substack{\text { all } \\
\text { possible } \\
x}} p_{x y}(x, y)
\end{aligned}
$$

Example of marginal poufs	y pun	0	1	2	$p_{x}(x)$

Joint CDF and Joint PDF (ch $5.3,5.4$)

$$
\begin{aligned}
& F_{x y}(x, y)=P(x \leq x, y \leq y) \\
& f_{x y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{x y}(x, y)
\end{aligned}
$$

so

$$
F_{x y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{x y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}
$$

Marginal $p d f$

$$
\begin{aligned}
& f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y \\
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x
\end{aligned}
$$

Marginal CDF

$$
\begin{aligned}
F_{x}(x) & =P(X \leqslant x)=P(X \leqslant x, y \text { anything }) \\
& =P(x \leqslant x, y \leqslant \infty) \\
& =\lim _{y \rightarrow \infty} F_{x y}(x, y) \\
F_{y}(y) & =\lim _{x \rightarrow \infty} F_{x y}(x, y)
\end{aligned}
$$

Joint CDF and its properties

Properties
(1) $\max _{x, y} F_{x y}(x, y)=1 \quad\left(\begin{array}{c}\text { when } \\ \text { and } \\ \text { and } \\ \lim \\ x \rightarrow \infty\end{array}\right)$
(the region becomes the entire sample space)
(2) $\min _{x, y} F_{x y}(x, y)=0 \quad\binom{$ either x or $y}{$ approaches $-\infty}$ (the region becomes the null set)
(3)

$$
\lim _{x \rightarrow \infty} F_{x y}(x, y)=F_{y}(y)
$$

(4)

$$
\begin{gathered}
P(a<X \leq b, c<y \leq d) \\
=F_{x y}(b, d)-F_{x y}(b, c)-F_{x y}(a, d)+F_{x y}(a, c)
\end{gathered}
$$

Compute probabilities of rectangular regions directly from the joint CDF

$$
\begin{aligned}
P(a< & X \leq b, c<y \leq d) \\
& =F_{x y}(b, d)-F_{x y}(b, c) \\
& -F_{x y}(a, d)+F_{x y}(a, c)
\end{aligned}
$$

the event
(memorization tip:
plus Fry evaluated at both 6ig/both small,) minus Fry evaluated at one big one sonall
Pictorial explanation

Compute probabilities of any region by integrating the joint PDF

In general,

$$
P((x, y) \in A)=\iint f_{x y}(x, y) d x d y
$$

for an arbitrary

Note: the joint PDF is a "hill" rising above its Region of Support

If A is not completely. inside the ROS of the PDF then yon want to integrate moly over $A \cap R$
For a rectangular region: $A=\{a \leq x \leq b, c \leq y \leq d\}$

$$
P(a \leq X \leq b, c \leq y \leq d)=\int_{y=c}^{d} \int_{x=a}^{b} f x y(x, y) d x d y
$$

Note pan attention to setting up the integration correctly!

Example computing a probability from ajoint PDF

$$
f_{x y}(x, y)= \begin{cases}2 & 0 \leq x \leq y \leq 1 \\ 0 & \text { else }\end{cases}
$$

a) what is $P(X \leq 1 / 2)$?
b) What io $P(x \leq 1 / 4, y \leqslant 1 / 2)$?

Draw the Ros! and each event

- Which triangle io in ROS?
Pick a point and test.
$x=1 / 2, y=0$ is NOT in ROS
Now add the event of interest $\{x \leq 1 / 2\}$

Set up and solve the double integration (see next page for

$$
P(x \leq 1 / 2)=\int_{0}^{1 / 2} \int_{x}^{1} f_{x y}(x, y) d y d x=\int_{0}^{1 / 2} \int_{x}^{1} 2 d y d x=\int_{0}^{1 / 2} 2(1-x) d x
$$

- To set up the limits of integration, always always draw a picture and reason it out.

- The limits on the outer integral s always the frill range for that variable.
Ex: if x is on outside, then $x \in[0,1 / 2]$
Ex: if y is on outside, then $y \in[0,1]$
- The limits on the inner integral must define the region. Draw arrows to see range.

- x on outside, for a given value of x

$$
y \in[x, 1]
$$

- y on outside, there are 2 cases.

$$
\begin{array}{ll}
\text { if } 0 \leqslant y \leqslant 1 / 2 & x \in[0, y] \\
\text { if } 1 / 2 \leqslant y \leqslant 1 & x \in[0,1 / 2]
\end{array}
$$

For this example, x on outside is easier y on outside would require 2 parts (but give the same answer)

Example part 2. What is $P(X \leqslant 1 / 4$ and $Y \leq 1 / 2)$

if y inside and x outside,
draw arrow for a given x along y direction

$$
\begin{aligned}
P(x & \leq 1 / 4, y \leq 1 / 2)=\int_{0}^{1 / 4} \int_{x}^{1 / 2} 2 d y d x \\
& =\int_{0}^{1 / 4} 2\left(\left.y\right|_{x} ^{1 / 2} d y=\int_{0}^{1 / 4} 2\left(\frac{1}{2}-x\right) d x\right. \\
& =\left(x-\left.\frac{2 x^{2}}{2}\right|_{0} ^{1 / 4}=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}\right.
\end{aligned}
$$

Possible shortcuts
If the joint PDF is flat in the

$$
P(A)=\frac{\begin{array}{c}
\text { region of miterest } \\
\text { area (ROS) }
\end{array}}{\begin{array}{l}
\text { area } \cap \text { POS }
\end{array}} \begin{aligned}
& \text { (ont do this } \\
& \text { if joint } \\
& \text { pdf is } \\
& \text { not flat } \\
& \text { over A or RoSs) }
\end{aligned}
$$

Compute probabilities of rectangular regions directly from the CDF
Compute probabilities of any region by integrating the PDF

Ajount CDF is useful because it expresses a probability.
However, it is most effective for computing probabilities of rectangular events only.

It's possible (but tedious) to compute a joint CDF from a joint PDF.
It's straight forward but requires a lot of attention to detail.

How many ways does the RUS intersect the event $\{x \leqslant x, y \leqslant y\}$?
To compute the CDF you must consider them all.
computing a joint CDF from a joint PDF
Example Joint uniform RVS.
(x, y) is a randomly selected point in the unit square.

$$
f_{x y}(x, y)=\left\{\begin{array}{cc}
1 & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right.
$$

Find joint CDF.
Method: divide 2-D plane into separate regions based on the intersection of the ROS with the region $\{x \leq x, y \leq y\}$
Region 1: $x<0$ or $y<0$

$$
\text { No overlap } \Rightarrow F_{x y}(x, y)=0
$$

Region 2: (x, y) inside unit square

$$
\begin{equation*}
F_{x y}(x, y)=\int_{0}^{x} \int_{0}^{y} 1 d y^{\prime} d x^{\prime}=x y \tag{1}
\end{equation*}
$$

Region 3: $0 \leq x \leq 1$ and $y>1$

$$
F_{x y}(x, y)=\int_{0}^{1} \int_{0}^{x} 1 d x^{\prime} d y^{\prime}=x
$$

Region 4: $x>1$ and $0 \leqslant y \leqslant 1$

$$
F_{x y}(x, y)=\int_{0}^{1} \int_{0}^{y} 1 d y^{\prime} d x^{\prime}=y
$$

Region 5: $\quad x>1$ and $y>1 \quad F_{x y}(x, y)=1$

A few additional examples
Two random variables are uniformly distributed over the triangle formed by $(0,0),(1,1),(1,0)$.

- Find the constant c (i.e., height of PDF)
- Find $P(x>1 / 2)$
- Compute the marginal PDFs

Height of PDF must be such that the joint pdf, integrated over its ROS, is 1. The area of the triangle is $1 / 2$, so height is 2 ,

$$
\begin{aligned}
& P(x>1 / 2)=\int_{1 / 2}^{1} \int_{0}^{x} 2 d y d x \\
&=2 \int_{1 / 2}^{1} x d x=\left.\frac{2 x^{2}}{2}\right|_{1 / 2} ^{1} \\
&=(1-1 / 4) \\
&=3 / 4
\end{aligned}
$$

marginals :

$$
\begin{aligned}
& \text { marginals: } \begin{aligned}
& f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y=\int_{0}^{x} 2 d y=\begin{array}{r}
\text { when } 0 \leq x \leq 1 \\
\text { (and } 0 \text { else) }
\end{array} \\
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x \quad \begin{array}{l}
\text { value of } x \text {, } f_{x y}(x, y) \\
\text { is non zen only for } 0 \leq y \leq x
\end{array} \\
&=\int_{y}^{1} 2 d x=2(1-y) \begin{array}{l}
\text { when } 0 \leq y \leq 1 \\
\text { and } 0 \text { else }
\end{array}
\end{aligned}
\end{aligned}
$$

Marginal PDF, PMF,CDF

- When yon care only about the random variable and not the other.
- These are completely identical to what we studied in Topic 2 .

Some properties (all are pmf/pdf) joint mf

$$
\sum_{\text {all } x} \sum_{\text {all } y} p_{x y}(x, y)=1
$$

$\underset{\text { puts }}{\operatorname{marginal}} \quad \sum_{\text {all }} p_{x}(x)=1$

$$
\sum_{\text {all } y} p_{y}(y)=1
$$

joint pdf $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x y}(x, y) d x d y=1$
$\begin{aligned} & \operatorname{marginal} \\ & p d f_{s}\end{aligned} \int_{-\infty}^{\infty} f_{x}(x) d x=1$

$$
\int_{-\infty}^{\infty} f_{y}(y) d y=1
$$

