overview	of	"Two	Random	Vaviables"
----------	----	------	--------	------------

	one RV	-two RVs	_
experiment	one exper. One outcome One RV X(w)	one experiment one ontcome w two RVs X(w), Y(w)	ch5,1
pmf (diocreteRV)	$P_{X}(x) = P(X = nx)$	$P_{xy}(x, y) =$ $P(\{x = x\} \land \{y = y\})$ a probability	ch 5, 2
cdf (any type)	$F_{X}(\gamma) = P(X \leq \chi)$	$F_{XY}(X, y) = P(\{X \le n\} \cap \{Y \le y\})$ a probability	Ch 5.3
polf	$f_X(x) = \frac{d}{dx} F_X(x)$ $f_X(x) = \frac{d}{dx} F_X(x)$	$f_{xy}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{xy}(x,y)$	ch 5.4
	×	Y Ros x fxy	- region of support where (x, y) > 0.

Two RVs: Joint probability mass function $p_{xy}(x,y) = P(X=\gamma, \gamma=y)$ Sample space Sxy = { (x,y) : Pxy(x,y) >0 } (the set of pairs (x,y) which have non zuo probability.) Three ways to represent a pmf: list, table, graph Example of a discrete pair of random variables Test 2 1Cs in seguence. Each can be acceptable (a) or rejected (r). Assume P(a) =0.9, and test outromés are independent Let X = # a cceptable circuito<math>Y = # successful tests before 1st rejections= {rr, ra, ar, aa } $S_{xy} = \begin{cases} (x,y) : (0,0), (1,0), (1,1), (2,2) \\ rr ra ar aa \end{cases}$ Sy = { 0,1,2} $S_{X} = \{ 0, 1, 2 \}$

mapping the outcome w:

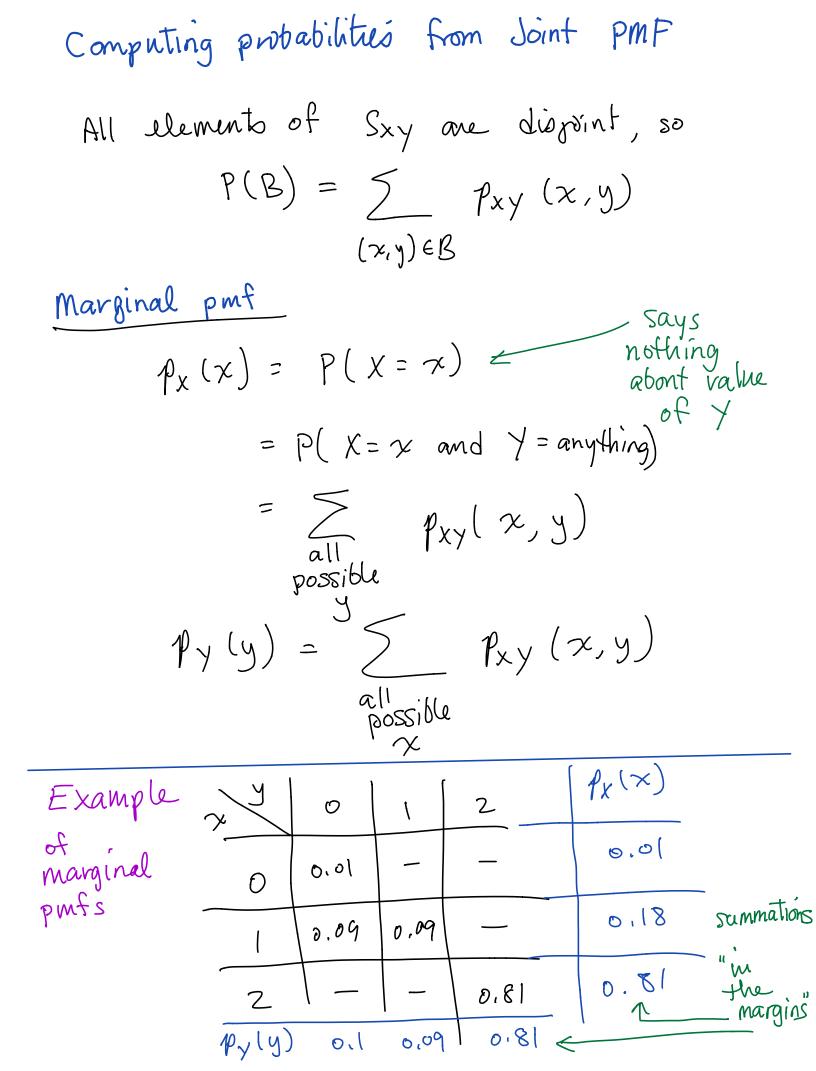
Joint PMF as a list / formula

$$P_{xy}(x,y) = \begin{cases} 0.01 & x=0, y=0 \\ 0.09 & x=1, y=0 \\ 0.09 & x=1, y=1 \\ 0.81 & x=2, y=2 \\ 0 & else \end{cases}$$

Joint PMF as a table

$$2 \xrightarrow{4} 0 \xrightarrow{1} 2$$

 $0 \xrightarrow{0.01} - -$
 $1 \xrightarrow{0.09} 0.09 \xrightarrow{-} 0.81$
 $2 \xrightarrow{-} - 0.81$
Joint PMF as
fully labeled graph
 $3 \xrightarrow{0.09} 0.09$
 $1 \xrightarrow{0.09} 0.09$
 $0 \xrightarrow{0.09} 1 \xrightarrow{2} 2$



Soint CDF and Soint PDF (ch 5.3, 5.4)

$$F_{xy}(x,y) = P(X \le x, Y \le y)$$

$$f_{xy}(x,y) = \frac{\partial^{2}}{\partial x \partial y} F_{xy}(x,y)$$
So $F_{xy}(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{xy}(x',y') dy' dx'$

Marginal gdf

$$f_x(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) dy$$

 $f_y(y) = \int_{-\infty}^{\infty} f_{xy}(x,y) dx$

Marginal CDF

$$F_{X}(x) = P(X \le x) = P(X \le x, y \text{ any Hing})$$

$$= P(X \le y, y \le \infty)$$

$$= \lim_{y \to \infty} F_{Xy}(x, y)$$

$$F_{Y}(y) = \lim_{x \to \infty} F_{Xy}(x, y)$$

Joint CDF and its properties

$$F_{xy}(x,y) = P(X \le x, Y \le y)$$
region of
$$\begin{cases} x \le x, Y \le y \\ -a \text{ guarter plane} \end{cases}$$
Properties
$$() \max_{x,y} F_{xy}(x,y) = 1 \quad (\text{ when } \lim_{x \to \infty} x \Rightarrow x, y)$$

$$(\text{the region becomes the entire}_{x,y})$$

$$() \max_{x,y} F_{xy}(x,y) = 0 \quad (\text{either } x \text{ or } y)$$

$$(\text{the region becomes the null set})$$

$$() \min_{x,y} F_{xy}(x,y) = F_{x}(x) \quad (\max_{x,y} y)$$

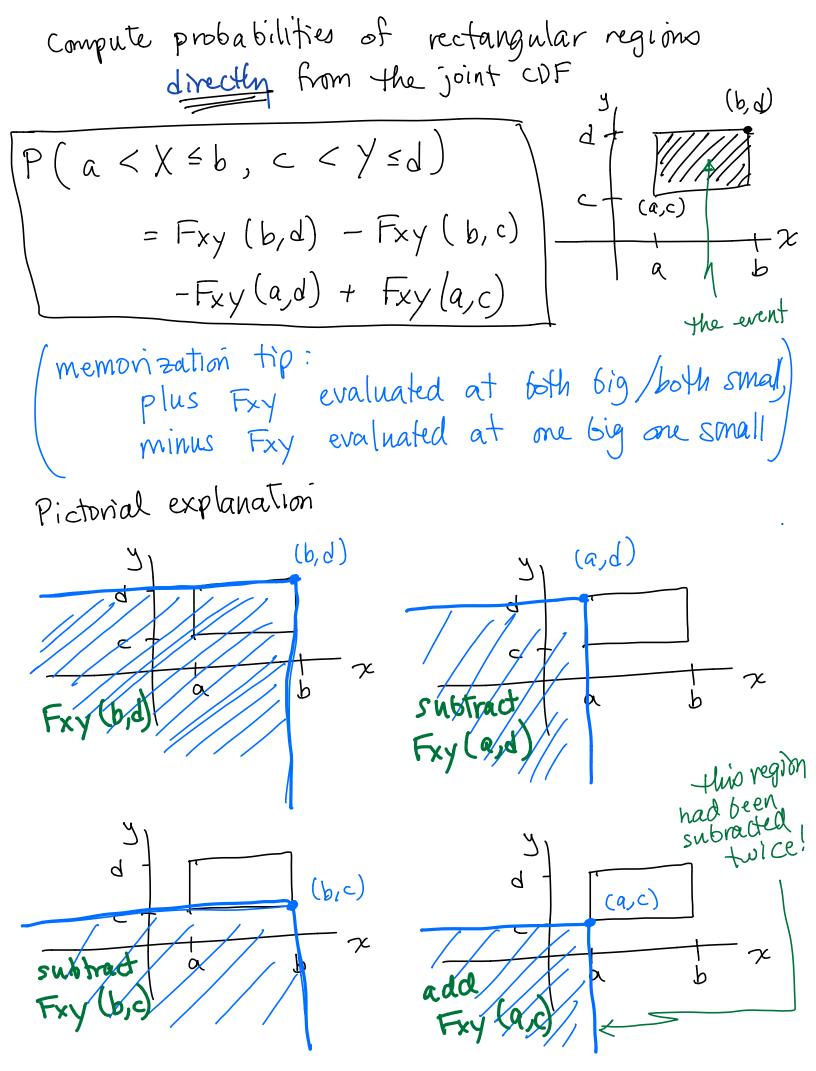
$$() \min_{x \to \infty} F_{xy}(x,y) = F_{x}(x) \quad (\max_{x,y} y)$$

$$() \min_{x \to \infty} F_{xy}(x,y) = F_{y}(y)$$

$$() P(a < X \le b, c < Y \le d)$$

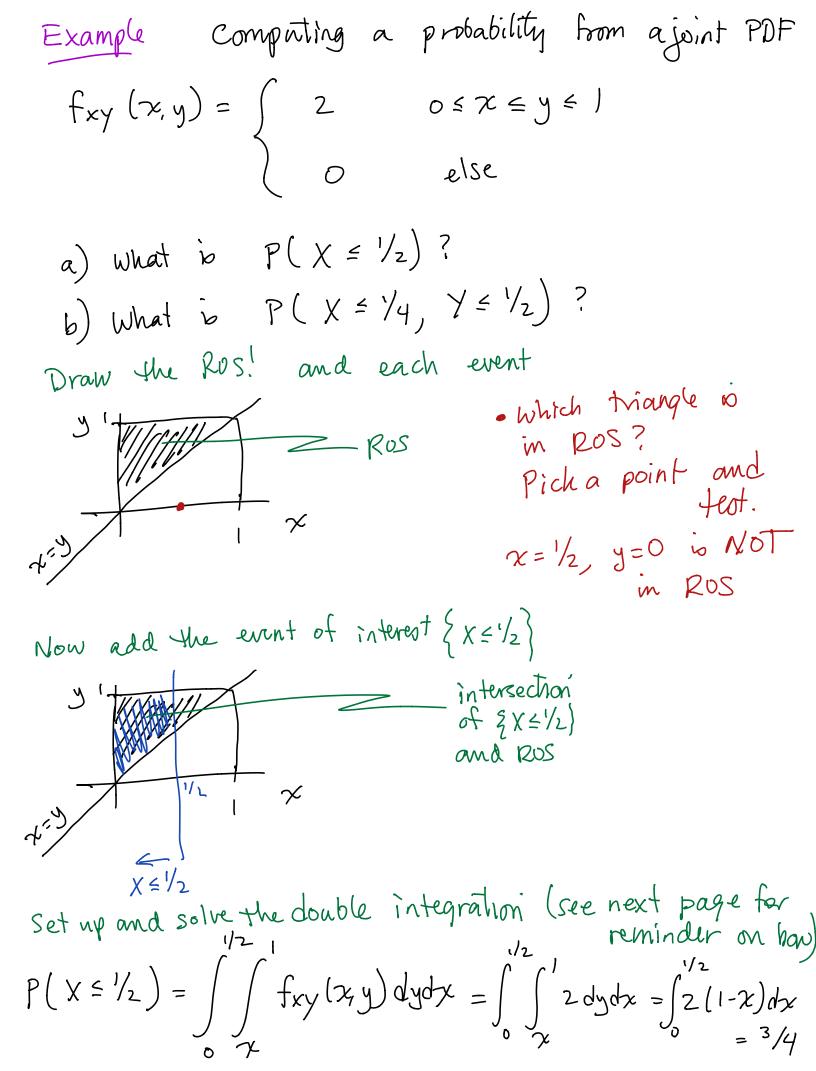
$$= F_{xy}(b,d) -F_{xy}(b,c) -F_{xy}(a,d) +F_{xy}(a,c)$$

)

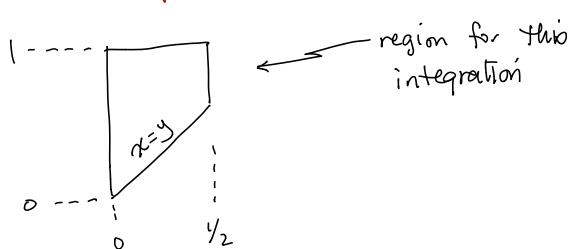


Compute probabilities of any region
by integrating the joint PDF
In general,
$$P((x,y) \in A) = \iint fxy(x,y) dxdy$$

for an arbitrary
event/region A $(x,y) \in A$
 I $(x,y) dx dy$
 I (x,y)



· To set up the limits of integration, always always draw a picture and reason it out.



- The limits on the outer integral 10 always the Gull range for that variable. Ex: if χ is on outside, then $\chi \in [0, \frac{1}{2}]$ Ex: if y'o on ontside, then y E [0,1] - The limits on the inner integral must define the region. Draw arrows to see range. · x on outside, for a given value of x 0 --- 0 $y \in [x, 1]$ · y on outside, there are 2 cases. $fo \leq y \leq 1/2 \quad x \in [0, y]$ if $\frac{1}{2} \leq y \leq 1$ $\chi \in [0, 1/2]$ x on outside is easier y on outside would require 2 parts (but give the same answer) For this example,

Example part 2. What is
$$P(X \leq 1/4 \text{ and } Y \leq 1/2)$$

interestion y_{12} for y

How many words does the RUS intersect
the event
$$\{\chi \leq \chi, \chi \leq y\}$$
?
To compute the CDF you must consider
them all.

Computing a joint CDF from a joint PDF
Example Joint uniform RVS.

$$(X, Y)$$
 is a randomly selected point in
the unit square.
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = \begin{cases} 1 & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \end{cases}$
 $f_{XY}(X, y) = f_{X}(X, y) = 0$
Region 1: $x < 0$ or $y < 0$
 $N = 0 \text{ overlap} = F_{XY}(x, y) = 0$
Region 2: $(x, y) \text{ inside unit square}$
 $F_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{XY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{YY}(X, y) = f_{Y}(X, y) = f_{Y}(X, y) = 0$
 $f_{YY}(X, y) = f_{Y}(X, y) = f_{Y}($

Kegion 4: x > l and $o \le y \le l$ Fxy $(x, y) = \int_{0}^{t} \int_{0}^{y} l dy' dx' = y$ Region 5: x > l and y > lFxy (x, y) = l

A few additional examples
Two vandom variables are uniformly distributed
over the triangle formed by
$$(0,0)$$
, $(1,1)$, $(1,0)$.
• Find the constant c (i.e., height of PDF)
• Find $P(X > 1/2)$
• Compute the marginal PDFs
Hught of PDF must be such that the
joint pdf, integrated over its ROS, is 1.
The area of the triangle is $1/2$, so height is 2.
 $P(X > 1/2) = \int_{1/2}^{1} \int_{0}^{\infty} 2 dy dx$
 $= 2 \int_{1/2}^{1} x dx = \frac{2 x^2}{2} \Big|_{1/2}^{1} = (1 - 1/4)$
 $= 3/4$
Ros nevent

marginals:

$$f_{x}(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) dy = \int_{0}^{x} 2 dy = \begin{bmatrix} 2\chi & \text{when } 0 \le x \le 1 \\ (and & 0 \le lse \end{bmatrix}$$

$$f_{x}(y) = \int_{0}^{\infty} f_{xy}(x,y) dx \qquad because for a given \\ value of x, f_{xy}(x,y) \\ is non zero only for $0 \le y \le 1$

$$= \int_{y}^{1} z dx = \begin{bmatrix} 2(1-y) & \text{when } 0 \le y \le 1 \\ and & 0 \le lse \end{bmatrix}$$$$

Some properties (all are pmf/pdf)
joint pmf
$$\sum_{all x} \sum_{all y} P_{xy}(x,y) = 1$$

marginal $\sum_{all x} P_{x}(x) = 1$
pmfs $all x$ $P_{y}(y) = 1$
 $z = p_{y}(y) = 1$
 $z = p_{y}(y) = 1$
 $z = p_{y}(x,y) dx dy = 1$
marginal $\int_{-\infty}^{\infty} f_{x}(x) dx = 1$
pdfs $\sum_{x} \int_{-\infty}^{\infty} f_{y}(y) dy = 1$