Review for Topic 2: Probabilities for one RV We do 4 things in this class
0) translate words into math

- identify experimental procedure, observation
- identify sample space, event of interest
- identify random variable and its $\mathrm{pmf} / \mathrm{pdf}$

1) Build models

- Equally likely
- Theorem of total probability $P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$ if B_{i} 's form partition

$$
f_{x}(x)=\sum_{i=1}^{n} f_{x}\left(x \mid B_{i}\right) P\left(B_{i}\right)
$$

(this man create a mixed $R V$)

- Independence $P(A \cap B)=P(A) P(B)$
- Any shape $f_{x}(x)=g(x) / c$, where $g(x)$ is piecewise con tinuons with $\int g(x) d x=C$
- Common pmfs (Bernoulli, binomial, geonehic, uniform, Poisson...)
- common pdfs (Gaussian, exponential...)
- derived RVS ($y=g(X)$ where $g($.$) is$ (this man alate a mixed RV)

2) Compute probabilities within an experiment

Axioms of probability and their corollaries

$$
\begin{aligned}
& 0 \leq P(A) \leq 1 \\
& P(S)=1=P(A)+P\left(A^{C}\right) \\
& P(A \cup B)=P(A)+P(B)-P(A \cup B) \quad \text { etc... }
\end{aligned}
$$

Probability mass functions, cumulative dislinitition function,' probability density functions

$$
\begin{aligned}
& P(a<x \leq b)=F_{x}(b)-F_{x}(a) \\
& P(a \leq x \leq b)=\int_{a}^{b} f_{x}(x) d x
\end{aligned}
$$

can be for continuous, discrete, or mixed RVS Applying Inunction
3) Learn from the experiment's outcome Bayes Rule $P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P(A)}$ updating pdf after learning partial info

$$
f_{x}(x \mid c)=\left\{\begin{array}{cc}
\frac{f_{x}(x)}{p(c)} & x \in c \\
0 & \text { else }
\end{array}\right.
$$

when C is an event that includes X. Hypothesis testing

$$
\begin{aligned}
& P_{F}=P\left(\text { decide present } \mid H_{0}\right) \\
& P_{D}=P\left(\text { decide present } \mid H_{1}\right)
\end{aligned}
$$

4) Compute summary statistics

Mean, variance, moments

$$
E(x), \operatorname{Var}(x), E\left(x^{n}\right)
$$

and their properties

$$
\begin{aligned}
E(a X+b) & =a E(X)+b \\
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Mean of derived RV

$$
\begin{aligned}
& E(X)=\int x f_{X}(x) d x \\
& E(g(x))=\int g(x) f_{X}(x) d x
\end{aligned}
$$

