Topic 2.7 Pdf of Y = g(X)



Example (thru progressively harder publems)  

$$y = \sqrt[4]{x}$$
 x is uniform between  $[0, 1]$   
a) what  $E(y)$ ?  
 $E(y) = \int_{0}^{\infty} \sqrt{x} f_{x}(x) dx = \int_{0}^{1} \sqrt{x} dx$   
(doit need to compute pdf of y)  
b) what's  $P(y \le 1/2)$ ?  $y = 1/2$   
 $P(y \le 1/2) = P(\sqrt{x} \le 1/2) = P(X \le (\frac{1}{2})^{2})$   
 $= P(x \le 1/4) = 1/4$   
(transform event in y into an event in X)  
c) generalize: what's  $P(y \le y)$ ? (i.e., what  $F_{y}(y)$ ?)  
what ranges of y are relevant?  
Look at both  $g(x)$  and  $f_{x}(x)$  — any special  
 $g(x)$   
 $f_{x}(x)$   
 $f_{x}(x)$   
 $1 \qquad x$   
 $Y = S \sqrt{x}$  is undefined for  $x < 0$   
 $y < 0$  is special  
 $f_{x}(x)$   
 $1 \qquad x$   
 $y < 1$  is also special

so to compute  $P(Y \le y)$ , we need to consider 3 regions:  $\{y < 0\}, \{0 \le y \le l\}, \{1 < y\}$ 

$$casel : y < 0$$

$$p(y \le y) = 0 \quad if \quad y < 0 \quad \rightarrow \text{ cannot happen}$$

$$case z: \quad y > 1$$

$$p(y \le y) = p(\sqrt{x} \le y)$$

$$= p(x \le y^{2})$$

$$= 1 \quad if \quad y > 1$$

$$y < 0 \quad \rightarrow \text{ cannot happen}$$

$$f_{x(x)} \quad f_{x(x)} \quad$$

case 3: 
$$0 \le y \le 1$$
  
 $P(Y \le y) = P(\sqrt{x} \le y) = P(X \le y^2)$   
 $= \int_{0}^{y^2} 1 dy = \chi \Big|_{0}^{y^2} = y^2$   
 $F_Y(y) = \begin{cases} 0 & y < 0 \\ y^2 & 0 \le y \le 1 \\ 1 & y < 1 \end{cases}$ 

0 ≤ y ≤ 1

2

y 7 l

 $f_{y}(y)$ 

Y

d) what's fy (y)? check: is Fy (y) continuous?

$$fy(y) = dFy(y) = \begin{cases} 0\\ dy \end{cases}$$

Recall: X was uniform check: does pdf have area 1?

The method of finding Fyly) and differentially  
to get fyly) always works.  
We can use it to compute a shortent for when  
$$g(X)$$
 is linear  
Example 4.31 Y is a linear function of X  
 $Y = aX + b$  when  $a \neq 0$   
whats Fyly) and fyly)?  
 $2step process - bind Fyly)$  and differentiate to  
get fyly)  
Fyly) =  $P(Y \leq y) = P(aX + b \leq y)$   
 $2case from here: arro and  $a < 0$   
case1:  $arro$   
 $Fyly) = P(X \leq \frac{y-b}{a}) = Fx(\frac{y-b}{a})$   
case2:  $a < 0$   
 $Fyly) = P(X \geq \frac{y-b}{a}) = 1 - Fx(\frac{y-b}{a})$   
(for a conthibution RV)$ 

what's 
$$f_{y}(y) = \frac{dF_{y}(y)}{dy}$$
?  
casel: a > 0  $f_{y}(y) = \frac{d}{dy}F_{x}(\frac{y-b}{a})$  use the chain rule  

$$= f_{x}(\frac{y-b}{a})\frac{d}{dy}(\frac{y-b}{a})$$
(see 6elow)  

$$= f_{x}(\frac{y-b}{a})\frac{d}{a}$$
case 2: a < 0  $f_{y}(y) = \frac{d}{dy}\left[1 - F_{x}(\frac{y-b}{a})\right]$   

$$= -f_{x}(\frac{y-b}{a})\frac{d}{dy}[\frac{y-b}{a}]$$

$$= -f_{x}(\frac{y-b}{a})\frac{d}{dy}[\frac{y-b}{a}]$$

Combine. The linear shortcut  $f_{y}(y) = \frac{1}{[a]} f_{x}(\frac{y-b}{a})$  for all  $a \neq 0$ when y = aX + b

Recall the chain rule:  $\frac{d}{d\chi} g_1(g_2(\chi)) = g'_1(g_2(\chi)) g'_2(\chi)$ So  $\frac{d}{d\chi} F_{\chi}(g_2(\chi)) = f_{\chi}(g_2(\chi)) \frac{d}{d\chi} g_2(\chi)$ 

Example of the linear short cut  

$$f_{X}(x) = \begin{cases} 5 & 0 \le x \le \frac{1}{5} \\ 0 & else \\ 0 & else \\ \end{cases}$$

$$y = g(X) = \frac{5X}{2} - 1$$

$$= a X + b \quad \text{where} \quad a = \frac{5}{2} \\ b = -\frac{1}{5} \\ \text{then} \quad f_{Y}(y) = \frac{1}{5/2} \quad f_{X}\left(\frac{y+1}{5/2}\right)$$
Substitute: when  $0 \le \frac{y+1}{5/2} \le \frac{1}{5} \\ \text{then} \quad f_{Y}(y) = \frac{1}{\sqrt{5}} \\ \text{then} \quad f_{Y}(y) = \frac{1}{\sqrt{5}} \\ \text{otherwise.} \end{cases}$ 
Simplify the condition  $\ldots$   $0 \le y+1 \le \frac{1}{2} \\ -1 \le y \le -\frac{1}{2} \\ 0 & else \\ \text{stretched and shifted} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{$ 

A linear function of a Gaussian RV is also a Gaussian RV

 $X ~ N(\mu, 6^2)$  $\gamma = \alpha X + b$  $f_x(x) = \sqrt{2tt}\sigma \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$  $f_y(y) = \frac{1}{|a|} f_x \left( \frac{y-b}{a} \right)$  (linear shortcut)  $= \frac{1}{|a|} \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{\left(\frac{y-b}{a}-\mu\right)^{2}}{2\sigma^{2}}\right)$  $= \sqrt{2\pi} \sigma \left( a \right) \exp \left( - \left( \frac{(y-b-a_{\mu})^{2}}{7a^{2}\sigma^{2}} \right) \right)$  $\gamma \sim N(a\mu + b, a^2 \sigma^2)$ This makes sense:  $E(aX+b) = aE(x)+b = a\mu + b$  $Var(aX+b) = a^{2}Var(A) = a^{2}\sigma^{2}$  $Ex^{2} \times N(\mu, \sigma^{2})$  $2 = \frac{X - \mu}{\sigma}$ Z~N(0,1) standard normal

| Derived    | RVs (                                   | Y = g(X)             | ) ave      | often          | mixed                        | RVS               |
|------------|-----------------------------------------|----------------------|------------|----------------|------------------------------|-------------------|
| Example:   | Xīvau                                   | niform               | RV 6       | etween         | [0,2]                        | ]                 |
|            | Y = min (                               |                      |            |                |                              |                   |
| what is    | the pdf c                               | sf Y?                | ٨          |                |                              |                   |
| Answer:    |                                         |                      |            | fx             | ,(z)<br>1                    | ` <i>\</i> /~_    |
| fx (x) =   | = { 1<br>2<br>0                         | $o \leq \gamma$ else | : < 2<br>e |                | x(2)                         | $\frac{1}{2}\chi$ |
| Fx (x) =   | $= \int_{-\infty}^{\infty} f_{x}(t) dt$ |                      |            | $0 \le \gamma$ | $x \leq 2$<br>x > 2<br>y > 2 |                   |
| Fy(y) = P( | $y \leq y$ )<br>$1 \qquad w^{y}$        | at one stint         | r " r      | g(x            |                              | slope O<br>×      |
| Case (1)   | y < ۱                                   |                      |            | 5/00           |                              | Pran              |
| conse (2)  | y =                                     |                      |            | if<br>a ree    | g(x)<br>gion with            | th slope          |
| case 3     | y > l                                   |                      |            | Zevo,          | = q(X)                       |                   |

l

Case 1: 
$$y < 1$$
  
We can apply the linear short cut  
 $f_y(y) = f_x(y) = \begin{cases} 1/2 & o \le y \le 1 \\ 0 & y < 0 \end{cases}$   
or do if out...  
 $F_y(y) = P(y \le y) = P(x \le y) = F_x(y)$ 

case 3: 
$$y > 1$$
  
 $F_{y}(y) = P(y \le y) = 1$   
 $f_{y}(y) = 0$ 

$$come 2: y = 1$$
  
 $F_{Y}(y) = P(Y \le 1) = 1$ 



Differentiating,  $f_y(y) = \begin{cases} f_x(y) & y < 1 \\ \frac{1}{2} \delta(y) & y = 1 \\ 0 & else \end{cases}$ 

$$F_{y}(y) = \begin{cases} F_{x}(y) & y < l \\ l & y \ge l \end{cases}$$







decreasing 
$$g(x_1) > g(x_2)$$
 for all  $x_1 < x_2$ 

A monotonic function can be inverted  $y = g(x) \implies x = h(y)$  $\Rightarrow g(h(y)) = y$ 

ex: 
$$y = g(x) = exp(x)$$
 =>  $h(y) = \frac{1}{a} lny$  for  $a \neq 0$   
ex:  $y = ax + b$  =>  $h(y) = y - b$  for  $a \neq 0$   
monotonic shortcut  
then  $f_{y(y)} = \frac{f_{x}(x)}{|\frac{dg(x)}{dx}|}$  if g is a  
monotonic differentiable  
function  
and recall  $f_{x(y)} = f_{x}(h(y))$ 

Lets verify this is true (when 
$$g(x)$$
 is monohonically  
increasing)  
Use 2-step process  
 $F_{y}(y) = P(g(x) \leq y) = P(X \leq h(y)) = F_{y}(h(y))$   
differentiate wirt y using the chain rule  
 $f_{y}(y) = f_{x}(h(y)) \frac{dh(y)}{dy}$   
To put this in the form  
above using  $g(x) directly$ ,  
differentiate both cides  $J_{y} = g(h(y))$   
 $I = \left[\frac{d}{dh} g(h(y))\right] \int \left[\frac{dh(y)}{dy}\right]$   
 $= \frac{dg(x)}{dx} \frac{dh(y)}{dy}$  since  $h(y) = x$   
so  $\frac{dh(y)}{dy} = \frac{1}{\frac{dg(x)}{\frac{dy}{2x}}}$   
Add the absolute value, which will include the  
case where  $g(x)$  is monotonically decreasing  
to get  
 $f_{y}(y) = \frac{f_{x}(x)}{\frac{dg(x)}{dx}}$  but don't forget  
 $f_{y}(y) = \frac{f_{x}(x)}{\frac{dg(x)}{dx}}$  but don't forget  
when  $g(x)$  monotonic + differentiable terms of  $y$  !

Application of the monotonic shortcut  

$$y = g(x) = \sqrt[+]{x} \quad \text{and} \quad X \text{ is uniform } [o, 1]$$

$$x = \gamma^{2} = h(\gamma) \qquad (\text{this is the same} \\ example no above: \\ we shall get the 
dg = \frac{1}{2\sqrt{x}} \qquad (\text{this is the same} \\ get dg = \frac{1}{2\sqrt{x}} \qquad (f_{x}(x)) = \frac{f_{x}(x)}{|\frac{dg}{dx}|} = \left( \begin{array}{c} f_{x}(x) \\ 1/2\sqrt{y} \end{array} \right) \times e[o,1] \\ 0 \quad else \end{array}$$
But this is not in   
terms of y so we are not done!  

$$f_{y}(y) = \left( \begin{array}{c} 2\sqrt{y^{2}} & f_{x}(y^{2}) \\ 0 & else \end{array} \right) \qquad y^{2} \in [o,1] \\ 0 & else \end{array}$$

$$= \left\{ \begin{array}{c} 2y \qquad \text{when } y \in [o,1] \\ 0 & else \end{array} \right. \qquad (good.this) \\ \text{same} \\ \text{answer} \end{array}$$

)

Simulating a RV on a computer  

$$X = rand(...)$$
  $X \in [0,1]$   
 $x = [0,1$ 

Some of the common continuous RVs are  
functions of other common RVs.  
. Cauchy RV : O is uniform 
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
  
 $Y = tan O$  is Cauchy  
. Chi - squared RV : X is Gaussian  
 $Y = X^2$  is Chi - square  
. Log normal RV : X is Gaussian  
 $Y = exp(X)$  is log-normal

Deriving the Canchy distribution Given y = tan Q where Q is uniformly distributed  $M\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (answer, the Cauchy distribution) what's the pdf of Y? stepl: expuss fo(0)  $f^0(0)$ fo(0)= < '/# =<0== 0 else step 2: Find Fo(0)  $F_0(0) = \left( \begin{array}{c} 0 & 0 \leq -\pi/2 \\ (0 + \pi/2)/\pi & -\pi/2 < 0 < \pi/2 \\ 1 & 0 \geq \pi/2 \end{array} \right)$ step 3:  $F_{y}(y) = P(Y \leq y) = P(-tom \Theta \leq y)$  $= P(O \leq \tan^{-1}(y)) = F_{O}(\tan^{-1}(y))$ =  $\frac{\tan^{-1}(y) + \pi/2}{2}$  in region of interest (Note, by substituting here w) FO(0) we can avoid chain chain rule) Step 4:  $fy(y) = \frac{dFy(y)}{dy} = \frac{1}{TT} \frac{1}{1+y^2} = \frac{1}{d(\tan^2(y))} \frac{1}{1+y^2}$ 

Review

· You can always apply the 2-step process. Fyly) <- find this 1st  $\overrightarrow{F_{x}}(x)$  $\overrightarrow{F_{x}}(x)$ fyly) < goal \_\_\_\_\_ substitute either one of these, whichever makes the math easier How to solve: 1) Can you apply one of the short cuts? · linear g(X) any flat spots in g(x)
monotonic differentiable g(x) 2) Find  $F_{y}(y) = P(Y \leq y)$ · identify distinct regions for various values y.  $\rightarrow$  these regions depend on g(x) and  $f_x(x)$ . · manipulate { Y = y } into the same event but expressed using X, not Y. • substitute Fx(x) here if it simplifies computation and substitute to eliminate x. 3) Differentiate Fy (y) to get fy (y) apply chain rule if necessary
substitute fxlx) here if needed