Topic 2.7 Pdf of $Y=g(x)$
We do 4 things in this class
(1) Build model

* counting (all elements equally likely)
* conditional events with the Thenem of total prob.
* any $g(x) \geqslant 0$ that is piecewise continnono with finite integral.
* common pdfs and pmfs
* given $f_{x}(x)$ and $y=g(x)$, find $f_{y}(y)$
(2) Compute probabilities for a given model
* Axioms of probability
* pmf, pdf, cdf
(3) Learn
* Bayes Rule
* Conditioning event C contains RVX (chop and scale)
(4) compute summary statistics
- expected value, variance, moment o
* conditional mean, conditional variance

PDF of a function of a RV (chapter 4.5) i.e., given X and its $p d f f_{x}(x)$, and given $Y=g(x)$, what is $f_{y}(y)$?
Recall: Y is a random variable
with respect to the 4 things we do in this class, this can be considered to be computing probabilities for the purpose of creating pwbubility models
why is this useful?

- characterize the output of a system if you know the functional form of the System, and know the PDF of the input
- have a good probability model for x, but want to know about Y ex: measure V, I, compute power

We alreacly know $E(g(x))$
Progressively harder problems
$P(g(x) \leq y)$ for a specific value y
$F_{y}(y)$ for all values of y
$f_{y}(y)$

Some useful functions

$$
\begin{aligned}
& y=a x+b \\
& \left.y=x^{2} ; \quad \begin{array}{l}
\text { (linear) } \\
y=+\sqrt{x}
\end{array} \quad \begin{array}{l}
y=Q(x) \\
y=|x| \\
y=1 / x \\
y=\log (x) \\
y=\sin (x) \\
\text { (quantizer) } \\
\text { rectifier } \\
y= \begin{cases}x & x \geqslant 0 \\
0 & x<0 \\
\text { quantization } \\
\text { error) }\end{cases} \\
\operatorname{limiter} \\
y=\left\{\begin{array}{cc}
-a & x<-a \\
x & -a \leq x \leq a \\
a & x>a
\end{array}\right.
\end{array}\right]
\end{aligned}
$$

methods

1) General case (always worles)
a 2 -step process to find
a) $F_{y}(y)$ and then
b) $f y(y)$
2) Specific cases \equiv short cuts - only relevant
a) $g(x)$ is linear $y=a X+b$
b) $g(x)$ is monotonically increasing/decreasing
C) $g(X)$ has flat parts and differentiable

Example (thru progressively harder problems)

$$
y=\sqrt[+]{x}
$$

x is uniform between $[0,1]$
a) what' $E(y)$?

$$
E(y)=\int_{-\infty}^{\infty} \sqrt{x} f_{x}(x) d x=\int_{0}^{1} \sqrt{x} d x
$$

(dort need to compute pdf of y)
b) what' $p(y \leq 1 / 2) ? \quad y=1 / 2$

$$
\begin{aligned}
P(y \leq 1 / 2) & =P(\sqrt{x} \leq 1 / 2)=P\left(x \leq\left(\frac{1}{2}\right)^{2}\right) \\
& =P(x \leq 1 / 4)=1 / 4
\end{aligned}
$$

(transform event in Y into an event in X)
c) generalize: what's $p(y \leq y)$?
(ie, what's $F_{y}(y)$?
What ranges of y are relevant?
Look at both $g(x)$ and $f_{x}(x)$ - any special cases?

YES. \sqrt{x} is undefined for $x<0$ so $y<0$ is special
AND $f_{x}(x)$ is non zero for $0 \leq x \leq 1$ only, so $y \geq 1$ is also special
so to compute $P(y \leq y)$, we need to consider 3 regions:

$$
\{y<0\},\{0 \leq y \leq 1\},\{1<y\}
$$

Case l: $y<0$
$P(y \leq y)=0$ if $y<0 \rightarrow$ cannot happen
case 2: $\quad y>1$

$$
\begin{aligned}
P(y & \leq y)=P(\sqrt{x} \leq y) \\
& =P\left(x \leq y^{2}\right) \\
& =1 \quad \text { if } \quad y>1
\end{aligned}
$$

case 3: $\quad 0 \leq y \leq 1$

$$
\begin{aligned}
& P(y \leq y)=P(\sqrt{x} \leq y)=P\left(x \leq y^{2}\right) \\
&=\int_{0}^{y^{2}} 1 d y=\left.x\right|_{0} ^{y^{2}}=y^{2} \\
& F_{y}(y)= \begin{cases}0 & y<0 \\
y^{2} & 0 \leq y \leq 1 \\
1 & y>1\end{cases} \\
&
\end{aligned}
$$

d) what's $f_{y}(y)$? check: is $F_{y}(y)$ continuous?

$$
\begin{aligned}
& f_{y}(y)=\frac{d F_{y}(y)}{d y}=\left\{\begin{array}{cl}
0 & y<0 \\
2 y & 0 \leq y \leq 1 \\
0 & y>1
\end{array}\right. \\
& \text { Recall: } x \text { was uni form } \\
& \text { checle: does pelf have } \\
& \text { area } 1 ?
\end{aligned}
$$

How do you know if your answer is correct?
(1) $\int_{-\infty}^{\infty} f_{y}(y) d y=1$
(2) It is a function of y, not x
(3) Yon have found the answer for even value of y
(4) You have substituted the relevant

$$
f_{x}(x) \text { or } F_{x}(x)
$$

(5) See if your answer makes sense in a small region

Common mistakes to avoid

$$
\text { if } y=x^{2} \quad F_{y}(y)=F_{x}(x)^{2}
$$

if $y=x^{2} \quad f_{y}(y)=f_{x}(x)^{2}$
Neither ane correct

The method of finding $F_{y}(y)$ and differentiating to get $f y(y)$ always worles.
we can use it to compute a shortent for when $g(x)$ is linear

Example 4.31 Y is a linear function of X $y=a X+b \quad$ when $a \neq 0$
whats $F_{y}(y)$ and $f_{y}(y)$?
2 step prouss - find Fy (y) and differentiate to get $f_{y}(y)$

$$
F_{y}(y)=P(y \leq y)=P(a X+b \leq y)
$$

2 cases from here: $a>0$ and $a<0$
case 1: $a>0$

$$
F_{y}(y)=P\left(x \leq \frac{y-b}{a}\right)=F_{x}\left(\frac{y-b}{a}\right)
$$

case 2: $a<0$

$$
F_{y}(y)=P\left(x \geqslant \frac{y-b}{a}\right)=1-F_{x}\left(\frac{y-b}{a}\right)
$$

(for a continuous RV)
next...
what' $f_{y}(y)=\frac{d F_{y}(y)}{d y}$?
case l: $a>0$

$$
\begin{aligned}
f_{y}(y) & =\frac{d}{d y} F_{x}\left(\frac{y-b}{a}\right) \\
& =f_{x}\left(\frac{y-b}{a}\right) \frac{d}{d y}\left(\frac{y-b}{a}\right) \\
& =f_{x}\left(\frac{y-b}{a}\right) \frac{1}{a}
\end{aligned}
$$

use the chain rule (see below)
case 2: $a<0$

$$
\begin{aligned}
f_{y}(y) & =\frac{d}{d y}\left[1-F_{x}\left(\frac{y-b}{a}\right)\right] \\
& =-f_{x}\left(\frac{y-b}{a}\right) \frac{d}{d y}\left[\frac{y-b}{a}\right] \\
& =-f_{x}\left(\frac{y-b}{a}\right) \frac{1}{a}
\end{aligned}
$$

combine.
The linear shortcut
$f_{y}(y)=\frac{1}{|a|} f_{x}\left(\frac{y-b}{a}\right)$ for all $a \neq 0$
when $y=a X+b$

Recall the chain rule:

$$
\frac{d}{d x} g_{1}\left(g_{2}(x)\right)=g_{1}^{\prime}\left(g_{2}(x)\right) g_{2}^{\prime}(x)
$$

So $\quad \frac{d}{d x} F_{x}\left(g_{2}(x)\right)=f_{x}\left(g_{2}(x)\right) \frac{d}{d x} g_{2}(x)$

Example of the linear shortcut

$$
\begin{aligned}
& f_{x}(x)=\left\{\begin{array}{ll}
5 & 0 \leq x \leq 1 / 5 \\
0 & e^{5 / s e} \\
x)=\frac{5 x}{2}-1
\end{array} \quad \begin{array}{l}
\text { where } \begin{array}{l}
a=5 / 2 \\
b=-1
\end{array}
\end{array}\right.
\end{aligned}
$$

then $f_{y}(y)=\frac{1}{5 / 2} f_{x}\left(\frac{y+1}{5 / 2}\right)$
Substitute: when $0 \leqslant \frac{y+1}{5 / 2} \leq 1 / 5$

$$
\text { then } f_{y}(y)=\frac{1}{s / 2}(5)=2
$$

and zero otherwise.
Simplify the condition...

$$
\begin{aligned}
& 0 \leq y+1 \leq 1 / 2 \\
& -1 \leq y \leq-1 / 2
\end{aligned}
$$

so $f_{y}(y)=\left\{\begin{array}{cc}2 & -1 \leq y \leq-1 / 2 \\ 0 & \text { else }\end{array}\right.$

A linear function of a Gaussian RV is also a Gaussian RV

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) \\
& y=a x+b \\
& f_{x}(x)=\frac{1}{\sqrt{2+1} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& f_{y}(y)=\frac{1}{|a|} f_{x}\left(\frac{y-b}{a}\right) \quad\left(\begin{array}{l}
\text { linear } \\
\text { shortcut })
\end{array}\right. \\
&=\frac{1}{|a|} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\frac{y-b}{a}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
&=\frac{1}{\sqrt{2+1} \sigma|a|} \exp \left(-\frac{(y-b-a \mu)^{2}}{2 a^{2} \sigma^{2}}\right) \\
& y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
\end{aligned}
$$

This makes sense: $E(a x+b)=a E(x)+b=a \mu+b$

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(A)=a^{2} \sigma^{2}
$$

$$
E x: \quad X \sim N\left(\mu, \sigma^{2}\right)
$$

$$
z=\frac{x-\mu}{\sigma}
$$

$Z \sim N(0,1) \quad$ standard normal

Derived RVS $(y=g(x)$) ave often mixed RVs
Example: X is a uniform $R V$ between $[0,2]$ and $y=\min (X, 1)=\left\{\begin{array}{cl}x & x<1 \\ 1 & x \geqslant 1\end{array}\right.$ (a clipper $)$
What is the pdf of y ?

$$
\begin{aligned}
& \text { Answer: } \\
& f_{x}(x)=\left\{\begin{array}{cc}
\frac{1}{2} & 0 \leq x \leq 2 \\
0 & \text { else }
\end{array}\right. \\
& \frac{a_{0}^{f_{x}(x)}}{0} \\
& F_{x}(x)=\int_{-\infty}^{x} f_{x}(t) d t=\left\{\begin{array}{c}
0 \\
x 12 \\
1
\end{array}\right. \\
& x<0 \\
& 0 \leq x \leq 2 \\
& x>2 \\
& F_{y}(y)=P(y \leq y) \\
& \text { "i? } g(x)=y \\
& \text { slope } 0 \\
& 5 \frac{102}{1020} 1 \\
& \text { if } g(x) \text { has } \\
& \text { a region with slope } \\
& \text { zero, then } \\
& y=g(x) \text { is } \\
& \text { likely a mixed RV. }
\end{aligned}
$$

Case 1: $y<1$
we can apply the linear short cut

$$
f_{y}(y)=f_{x}(y)=\left\{\begin{array}{cc}
1 / 2 & 0<y<1 \\
0 & y<0
\end{array}\right.
$$

or do it out...

$$
F_{y}(y)=P(y \leq y)=P(x \leq y)=F_{x}(y)
$$

case 3: $y>1$

$$
\begin{aligned}
& F_{y}(y)=P(y \leqslant y)=1 \\
& f_{y}(y)=0
\end{aligned}
$$

case 2: $y=1$

$$
F_{y}(y)=P(y \leq 1)=1
$$

sketch

$$
F_{y}(y)= \begin{cases}F_{x}(y) & y<1 \\ 1 & y \geqslant 1\end{cases}
$$

Differentiating,

$$
f_{y}(y)=\left\{\begin{array}{cc}
f_{x}(y) & y<1 \\
1 / 2 \delta(y) & y=1 \\
0 & \text { else }
\end{array}\right.
$$

An intuitive approach to the previas problem

linear
region doesint
change
PDF
flat region
forces all values of x in this range to $1 \Rightarrow$ delta function with area $=P(X>1)$
$f_{y}(y)$

Another special case (aka shortcut)
if $y=g(x) \quad g(\cdot)$ is a differentiable and monotonic function then we can diredly compute fy (y) from $f_{x}(x)$ without computing $F y(y)$

Monotonic:
increasing $g\left(x_{1}\right)<g\left(x_{2}\right)$ for all $x_{1}<x_{2}$
decreasing $g\left(x_{1}\right)>g\left(x_{2}\right)$ for all $x_{1}<x_{2}$
Amonotonic function can be inverted

$$
\begin{aligned}
y=g(x) & \Rightarrow x=h(y) \\
& \Rightarrow g(h(y))=y
\end{aligned}
$$

ex: $y=g(x)=\exp (x) \Rightarrow h(y)=\frac{1}{a} \ln y$ for $a \neq 0$
ex: $y=a x+b \quad \Rightarrow h(y)=\frac{y-b}{a}$ for $a \neq 0$
then

$$
\begin{array}{ll}
f_{y}(y)=\frac{f_{x}(x)}{\left|\frac{d g(x)}{d x}\right|} & \begin{array}{l}
\text { if } \begin{array}{c}
g \text { is a } \\
\text { monotonic } \\
\text { differentiable } \\
\text { function }
\end{array} \\
\text { recall } f_{x}(x)=f_{x}(h(y))
\end{array}
\end{array}
$$

Let's verify this is true (when $g(x)$ is monotonically increasing)
Use 2-step process

$$
F_{y}(y)=P(g(x) \leq y)=P(X \leq h(y))=F_{X}(h(y))
$$

differentiate w.r.t y using the chain rule

$$
f_{y}(y)=f_{x}(h(y)) \frac{d h(y)}{d y}
$$

To put this in the form above wring $g(x)$ directly,
differentiate both sides of $y=g(h(y))$

$$
\begin{aligned}
1 & =\left[\frac{d}{d h} g(h(y))\right]\left[\frac{d h(y)}{d y}\right] \\
& =\frac{d g(x)}{d x} \frac{d h(y)}{d y} \quad \text { since } h(y)=x \\
\text { so } & \frac{d h(y)}{d y}=1 / \frac{d g(x)}{d x}
\end{aligned}
$$

Add the absolute value, which will include the case where $g(x)$ is monotonically decreasing to get

$$
f_{y}(y)=\frac{f_{x}(x)}{\left|\frac{d g(x)}{d x}\right|}
$$

but dort forget this needs to be expressed in when $g(x)$ monotonic + differentiable terms of y !

Application of the monotonic shortcut

$$
\begin{aligned}
& y=g(x)=\sqrt[+]{x} \quad \text { and } \quad X \text { is uniform }[0,1] \\
& x=y^{2}=h(y) \quad \begin{array}{l}
\text { (This is the same } \\
\text { example as above. } \\
\text { we shone get the } \\
\text { same answer) }
\end{array} \\
& \begin{array}{l}
\frac{d g}{d x}=\frac{1}{2 \sqrt{x}} \\
f_{y}(y)=\frac{f_{x}(x)}{\left|\frac{d g}{d x}\right|}= \begin{cases}\frac{f_{x}(x)}{1 / 2 \sqrt{x}} & x \in[0,1]\end{cases}
\end{array} \begin{array}{ll}
\text { else }
\end{array}
\end{aligned}
$$

But this is not in terms of y so we are not done!

$$
\left.\begin{array}{rl}
f_{y}(y) & =\left\{\begin{array}{cc}
2 \sqrt{y^{2}} f_{x}\left(y^{2}\right) & y^{2} \in[0,1] \\
0 & \text { else }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
2 y & \text { when } y \in[0,1] \\
0 & \text { else }
\end{array} \begin{array}{l}
\text { good. this } \\
\text { o the } \\
\text { same } \\
\text { answer }
\end{array}\right.
\end{array}\right)
$$

Simulating a RV on a computer

$$
X=\operatorname{rand}(\cdots)
$$

$$
x \in[0,1]
$$

uniformly distributed
Xis actually discrete
with, say 2^{31} values, generated pseudorandonly.
\Rightarrow a good approximation to a contrinons RV
Suppose we want Z to have a $\operatorname{CDF} F_{z}(z)$?
what $Z=g(X)$ will create a
RV Z with the proper CDF
Answer: If $g(x)=F_{z}^{-1}(z)$ then Z has the desired CDF
(as long as $g(x)$ is a monotonic function and $F_{z}(z)$ is invertible)
Proof:

$$
\begin{aligned}
F_{z}(z) & =p(z \leq z)=p(g(x) \leq z) \\
& =p\left(x \leq g^{-1}(z)\right)=F_{x}\left(g^{-1}(z)\right)
\end{aligned}
$$

$=g^{-1}(z)$ in the desired range, since X is uniform so $F_{x}(x)=x$ in the desired range

$$
=F_{z}(z)
$$

Some of the common continuous $R V s$ are functions of other common RVs.
. Cauchy RV: θ is uniform $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$y=\tan \theta$ is Cauchy

- Chi-squared RV: X is Gaussian
$Y=X^{2}$ is Chi-square
- Lognormal RV: X is Gaussian $Y=\exp (X)$ is log-nurmal

Deriving the Cauchy distribution
Given
$y=\tan \theta \quad$ where θ is uniformly distributed

$$
\text { on }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

whats the pdf of y ? (answer, the Cancly, distribution)
step 1: expuss $f_{\theta}(\theta)$

$$
f_{\theta}(\theta)=\left\{\begin{array}{cl}
1 / \pi & -\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
0 & \text { else }
\end{array}\right.
$$

step 2: find $F_{\theta}(\theta)$

$$
\begin{aligned}
& \text { find } F_{\theta}(\theta) \\
& F_{\theta}(\theta)=\left\{\begin{array}{cc}
0 & \theta \leq-\pi / 2 \\
(\theta+\pi / 2) / \pi & -\pi / 2<\theta<\pi / 2 \\
1 & \theta \geqslant \pi / 2
\end{array}\right.
\end{aligned}
$$

step 3: $F_{y}(y)=P(y \leqslant y)=P(\tan \theta \leqslant y)$

$$
=P\left(\theta \leqslant \tan ^{-1}(y)\right)=F_{\theta}\left(\tan ^{-1}(y)\right)
$$

$=\frac{\tan ^{-1}(y)+\pi / 2}{\pi}$ in region of interest
(Note, by substituting here w) $F_{\theta}(\theta)$ we can avoid chain rule)
Step 4: $f_{y}(y)=\frac{d F_{y}(y)}{d y}=\frac{1}{\pi} \frac{1}{1+y^{2}} \quad \begin{aligned} & \text { since } \\ & \frac{d\left(\tan ^{-1}(y)\right)}{d y}=\frac{1}{1+y^{2}}\end{aligned}$

Review

- You can always apply the 2-step process.

$$
\left[\begin{array}{l}
F_{x}(x) \\
\rightarrow f_{x}(x)
\end{array}\right.
$$

$F_{y}(y) \longleftarrow$ find this 1 st
$f_{y}(y) \longleftarrow$ goal
substitute either one of these, whichever makes the math easier
How to solve:

1) Can you apply one of the short cuts?

- linear $g(x)$
- any flat spots in $g(x)$
- monotonic differentiable $g(x)$

2) Find $F_{y}(y)=P(y \leq y)$

- identify distinct regions for various values y. \rightarrow these regions depend on $g(x)$ and $f_{x}(x)$.
- manipulate $\{y \leqslant y\}$ into the same event but expressed using X, not Y.
- substitute $F_{x}(x)$ here if it simplifies computation and substitute to eliminate x.

3) Differentiate $F_{y}(y)$ to get $f_{y}(y)$

- apply chain rule if necessary
- substitute $f_{x}(x)$ here if needed

