Conditional pmfs (section 3.4)
Conditional cdfs (section 4.2.2)
Conditional pdfs (section 4.2.2)
These combine the concept of RVs with
the concept of conditional probability.
New notation and new insight - same fundamentals.
The conditioning event, C describes the partial
information we may have about the RV X
or its underlying experiment.
Let X be a RV with pmf
$$f_X(x)$$

conditional pmf $p_X(x)$
conditional pmf $p_X(x)$
conditional pmf $p_X(x)$
conditional cdf $F_X(x)$
Conditional cdf $F_X(x)$
conditional pdf $f_X(x)$
Note: $p_X(x)(c)$ is a pmf and has all the properties
 $F_X(x)(c)$ is a cdf. $f_X(x)(c)$ is a pmf.

Recall: for conditional probability we had D definition 2 thenem of total probability (building more complicated models) 3 Bayes Rule / inference (improving our knowledge) Well consider these again for this new scenario w/ RVs. Well also consider conditional expectation ond conditional variance

Theorem of total publicity for RVS.
Suppose
$$B_1, B_2, \dots, B_n$$
 partition the sample space.
 $p_x(x) = \sum_{i=1}^n p_x(x | B_i) p(B_i)$ (3.24) on page 113
 $F_x(x) = \sum_{i=1}^n F_x(x | B_i) p(B_i)$ (4.25) on page 153
 $f_x(x) = \sum_{i=1}^n f_x(x | B_i) p(B_i)$ (4.26) m page 153

Use this to build more complicated models from several simpler ones.

Example Yon want to model the height of the trees in a forest, and yon know there are stypes of trees, each with their own height distribution. $F_{H}(h|T_{i})$ where T_{i} is and you know $P(T_{i})$. $F_{H}(h|T_{i})$ where T_{i} is type Then overall model of tree height in the forest is $F_{H}(h) = F_{H}(h|T_{i}) P(T_{i}) + F_{H}(h|T_{2}) P(T_{2})$ $+F_{H}(h|T_{3}) P(T_{3})$

Example A production line creates two kinds
of durices. Type I devices occur with
publishing
$$\alpha$$
 and have a life time
governed by
 $P_X(x | B_1) = (1-r)^{\chi-1}r$ $\chi=1,2,...$
Type 2 devices occur ω) puble $1-\alpha$
and have life time
 $P_X(\chi | B_2) = (1-s)^{\chi-1}s$ $\chi=1,2,...$
Select a device and observe its lifetime

 $P_{X}(x) = P_{X}(x|B_{1})P(B_{1}) + P_{X}(x|B_{2})P(B_{2})$

Sanssian mixtures are a popular model.
- communication signals
- speech signals
- pixel values in image and indes
Example 4.11: Communication system with
Gaussian noise
· send a 0 by sending a signal w/ -v volts
· send a 1 by sending a signal w/ +v volts.

$$P("I") = p = 1 - P("o")$$
. $B_1 = \{send I\} \ B_s = \{sendo\}$
Send signal X, receive signal X + N
N is a vandom noise voltage, Gaussian $N(0, \sigma^2)$
 $f_{X|X}$
 $f_{N|X}$
 $f_{N|X}$
if $B_1 = \{send I\}$, then $X = v$ and $Y = +v + N$
so YIB, is gaussian $N(v, \sigma^2)$
and similarly $Y(B_0 \sim N(-v, \sigma^2))$

And the received signal Y is in general a mixture of Gaussians

$$f_y(y) = f_y(y|B_i)P(B_i) + f_y(y|B_o)P(B_o)$$

Note: the relative values of v and 5² control the shape of the pdf and the separability of the 2 cases

Intivition : if C happened, then
X could not have taken values
outside of
$$C = \{a < x \le b\},\$$

So $f_x(x|c) = 0$ for x not in C.
But $f_x(x|c)$ must be a pdf,
So $\int_{x}^{\infty} f_x(x|c) dx = 1$
Hend we know $\int_{x}^{b} f_x(x) dx = P(c)$
a

so
$$\int_{a}^{b} \frac{f_{x}(x)}{p(c)} dx = 1 \quad \text{and} \quad f_{y}(x|c) = \frac{f_{x}(x)}{p(c)}$$

$$a \quad \text{when } x \in c.$$

why chop and scale? The mathematical derivation recall conditional CDF $F_{x}(x|c) = P(X \leq x|c)$ $= P(\{x \le x\} \land \{a < x \le b\})$ P({a < x < b }) To compute this for all values of X, we will need to look at the different ways that {X < x } and { a < X < b } overlap $\int \chi < \alpha$ Fx(x|c)=0 eventC b a ;f x<a x>b 2) $F_{x}(\gamma | c) = |$ eventC if x>b b {X < ~ } a γ Because {X ≤ x } A C = C in this region $F_{x}(x|c) = \frac{P(x \in x \land c)}{P(c)} = \frac{P(c)}{P(c)} = 1 \quad \text{if } x > b$

3)

These are "2 sides of the same coin".
Example: Suppose when event A^c happens,
a RV X is uniformly distributed on (1,3),
but when A happens, X is a constant -1.

$$f_{x}(x|A^{c}) = \begin{bmatrix} u(x-1) - u(x-3) \end{bmatrix}_{2}^{t}$$
 $f_{x}(x|A) = S(x+1)$
If $P(A) = P(A^{c}) = 1/2$, then
 $f_{x}(x) = P(A) f_{x}(x|A) + P(A^{c}) f_{x}(x|A^{c})$
 $= \frac{1}{2} \begin{bmatrix} \frac{1}{2} u(x-1) - \frac{1}{2} u(x-3) + S(x+1) \end{bmatrix}$
 $f_{x}(A)$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$

The flip side: Take
$$f_{X}(x)$$
 from the
previous example and let $A = \{X < 0\}$.
 $f_{X}(A)$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$
 $1/2$

The intuitive way. when $A = \{x < 0\}$, we have just the S(x+1)shape and it needs to be a pdt, so $f_{\chi}(\chi(A) = S(\chi + 1)).$ when A^c happens, the remaining uncertainty has the uniform shape and it needs to be a pdf, so $f_{x}(x|A') = \frac{1}{2} \left[u(x-1) - u(x-3) \right]$ The scaling happens automatically, and "just so happens" equals 1/p(A) (if A is the conditioning event.)

Another example of a mixed RV

The City Bus arrives at the busstop by your home
every 15 minutes starting at 60am. You arrive at
the busstop between 7:10 and 7:30, with the
time being a uniform vandom variable in this
interval. What is the pdf of the time yon
have to wait?
Answer:
$$\chi = your$$
 arrival time
 $\chi = your$ wait time
 $\chi = your$ wait time
 $\chi = your wait fime$
 $R = \{ you get on the 7:15 6mo \}$
 $A \cup B = S.$
 $B = \{ you get on the 7:30 6mo \}$
 $A = \{ 7:10 \le x \le 7:15 \}$
 $B = \{ 7:10 \le x \le 7:15 \}$
 $B = \{ 7:10 \le x \le 7:30 \}$
Conditioned on A, your arrival is uniform [7:10, 7:15].
so your wait conditioned on A is also uniform [0, 5].
 $fy(y|A) = \{ \sqrt{5} \quad 0 \le y \le 5 \\ 0 \quad else$
Conditioned on B, your wait is uniform $[0, 15].$
 $fy(y) = fy(y|A) P(A) + fy(y|B) P(B)$
 $= \{ \sqrt{5} \cdot \sqrt{4} + \sqrt{5} \cdot \sqrt{5} = \{ \sqrt{10} \\ \sqrt{10} \end{cases}$