\(\left.\begin{array}{lll}Conditional peps \& (section 3.4) \\
Conditional oafs \& (section 4.2.2) \\

Conditional pdfs \& (section 4.2.2)\end{array}\right\}\)| conditioned |
| :--- |
| on an |
| event |

These combine the concept of RVS with the concept of conditional probability.
New notation and new insights - same fundamental.

The conditioning event, C describes the partial information we may have about the RV X or its underlying experiment.
Let x be a RV with mf $p_{x}(x)$
cdf $F_{x}(x)$
andlor $p d f f_{x}(x)$
C is an event, $P(c)>0$.
Definitions
conditional puff

$$
\begin{aligned}
& P_{x}(x \mid c)=P(\{x=x\} \mid c) \\
& F_{x}(x \mid c)=\frac{P(\{x \leq x\} \cap c)}{p(c)}
\end{aligned}
$$

conditional cdf
conditional $p d f \quad f_{x}(x \mid c)=\frac{d}{d x} F_{x}(x \mid c)$
Note: $p_{x}(x \mid c)$ is a $p m f$ and has all the popeitie's $\left.F_{x}|x| c\right)$ is a $c d f . \quad f_{x}(x \mid c)$ b a pdf. of a pmf.

Recall: for conditional probability we had
(1) definition
(2) Thenem of total probability (building more complicated modes)
(3) Bayes Rule/inference (improving our knowledge)
well consider these again for this new scenario w/ RVS.
well also consider conditional expectation' and conditional variance

Theorem of total probability for RVS.
Suppose $B_{1}, B_{2}, \ldots, B_{n}$ partition the sample space.

$$
\begin{aligned}
& P_{x}(x)=\sum_{i=1}^{n} P_{x}\left(x \mid B_{i}\right) P\left(B_{i}\right) \\
& F_{x}(x)=\sum_{i=1}^{n} F_{x}\left(x \mid B_{i}\right) P\left(B_{i}\right) \\
& f_{x}(x)=\sum_{i=1}^{n} f_{x}\left(x \mid B_{i}\right) P\left(B_{i}\right)
\end{aligned}\left\{\begin{array}{l}
(4.24) \text { on page } 113 \\
(4.26) \text { m page } 153
\end{array}\right.
$$

Use this to build more complicated models from several simpler ones.

Example you want to model the height of the trees in a forest, and yon know there are 3 types of trees, each with their own height distribution. $\quad F_{H}\left(h \mid T_{i}\right)$ where T_{i} is the tree and you know $P\left(T_{i}\right)$. type

Then overall model of tree height in the forest is

$$
\begin{gathered}
F_{H}(h)=F_{H}\left(h \mid T_{1}\right) P\left(T_{1}\right)+F_{H}\left(h \mid T_{2}\right) P\left(T_{2}\right) \\
+F_{H}\left(h \mid T_{3}\right) P\left(T_{3}\right)
\end{gathered}
$$

Example A production line creates two kinds of devices. Typel devices occur with probability α and have a life Time governed on

$$
\begin{aligned}
& \text { governed } \text { bn } \\
& p_{x}\left(x \mid B_{1}\right)=(1-r)^{x-1} r \quad x=1,2, \ldots
\end{aligned}
$$

Type 2 devices occur w) prob. 1-a and have life time

$$
P_{x}\left(x \mid B_{2}\right)=(1-s)^{x-1} s \quad x=1,3 \ldots
$$

Select a device and observe its lifetime

$$
P_{x}(x)=P_{x}\left(x \mid B_{1}\right) P\left(B_{1}\right)+P_{x}\left(x \mid B_{2}\right) P\left(B_{2}\right)
$$

Gaussian mixtures are a popular model.

- communicatrón signals
- speech signals
- pixel values in image and video

Example 4.11 : Communi cation system with
Gaussian noise

- send a O by sending a signal $w /-v$ volts
- send al by sending a signal $w)+v$ volts.

$$
P(" \mid ")=p=1-P\left(" 0^{\prime \prime}\right) . \quad B_{1}=\{\operatorname{sen} d 1\} \quad B_{0}=\{\operatorname{send} 0\}
$$

Send signal X, receive signal $X+N$
N is a random nose voltage, Gaussian $N\left(0,6^{2}\right)$

pdf of signal X
pdf of noise N

If $B_{1}=\{\operatorname{sen} d \backslash\}$, then $X=V$ and $Y=+v+N$
so $Y \backslash B_{1}$ io gaussian $N\left(V, \sigma^{2}\right)$
and similarly $Y\left(B_{0} \sim N\left(-V, \sigma^{2}\right)\right.$

$$
y \mid B_{0} \sim N\left(-V, \sigma^{2}\right)
$$

$$
y \mid B_{1} \sim N\left(+V, \sigma^{2}\right)
$$

And the received signal Y is in general a mixtine of Gaussians

$$
f_{y}(y)=f_{y}\left(y \mid B_{1}\right) P\left(B_{1}\right)+f_{y}\left(y \mid B_{0}\right) P\left(B_{0}\right)
$$

pdf of signal y

Note: the relative values of v and σ^{2} control the shape of the pdf and the separability of the 2 cases
$f y(y)$

for a smaller r^{2}.

Inference: what happens if our conditioning event depends on the values of the RV X?

This is an important special case

- allows us to update our understanding of X, and incorporate knowledge we gain by observing the out come of our expenment.

Given $\operatorname{RV} X$, event C, where C depends on X given $f_{x}(x)$ and $c=\{a<x \leq b\}$
We can easily compute $\quad P(c)=\int_{a}^{b} f_{x}(x) d x$ Then $f_{x}(x \mid c)=\left(f_{x} \mid x\right) \quad a$ Then $f_{x}(x \mid c)=\left\{\frac{\left.f_{x} \mid x\right)}{p(c)}\right.$ when $x \in c$

Intuition: if C happened, then
X could not have taken values outside of $c=\{a<x \leqslant b\}$,
so $f_{x}(x \mid c)=0$ for x not in C.
But $f_{x}(x \mid c)$ must be a pdf,
so $\int_{-\infty}^{\infty} f_{x}(x \mid c) d x=1$
And we know

$$
\int_{a}^{b} f_{x}(x) d x=P(c)
$$

so

$$
\begin{array}{r}
\int_{a}^{b} \frac{f_{x}(x)}{p(c)} d x=1 \text { and } f_{x}(x \mid c)=\frac{f_{x}(x)}{p(c)} \\
\text { when } x \in c
\end{array}
$$

You need to remember both pieces!
chop (narrow the sample space)
Scale (renormalize)
These are the same 2 steps we used when we first considered conditional probability

Why chop and scale? The mathematical derivation' recall conditional CDF

$$
\begin{aligned}
F_{x}(x \mid c) & =\frac{P(x \leq x \mid c)}{P(\{a<x \leq b\})}
\end{aligned}
$$

To compute this for all values of x, we will need to look at the different ways that $\{x \leq x\}$ and $\{a<x \leq b\}$ overlap
(1) $x<a$
event C

$$
F_{x}(x \mid c)=0
$$ if $x<a$

(2) $x>b$

$$
\begin{gathered}
F_{x}(x \mid c)=1 \\
\text { if } x>b
\end{gathered}
$$

Because $\{x \leq x\} \cap C=C$ inthis region

$$
F_{x}(x \mid c)=\frac{P(x \leq x \cap c)}{P(c)}=\frac{P(c)}{P(c)}=1 \text { if } x>b
$$

(3) $a<x \leq b$

for $a \leqslant x \leqslant b$

Combining

Differentrate to qet condinonal $p d f$:

$$
f_{x}(x \mid c)=\left\{\begin{array}{ccc}
0 & x<a \ll \\
\frac{f_{x}(x)}{p(c)} & a<x \leq b & \longleftrightarrow \text { scale } \\
0 & x>b & \longleftrightarrow
\end{array}\right.
$$

These are "2 sides of the same coin".
Example. Suppose when event A^{c} happens, a RV X is uniformly distributed on $(1,3)$, but when A happens, X is a constant -1 .

$$
\left.f_{x}\left(x \mid A^{c}\right)=[u(x-1)-u(x-3)] \frac{1}{2} \quad f_{x}|x| A\right)=\delta(x+1)
$$

If $P(A)=P\left(A^{c}\right)=1 / 2$, then

$$
\begin{aligned}
f_{x}(x) & =P(A) f_{x}\left(x(A)+P\left(A^{c}\right) f_{x}\left(x\left(A^{c}\right)\right.\right. \\
& =\frac{1}{2}\left[\frac{1}{2} u(x-1)-\frac{1}{2} u(x-3)+\delta(x+1)\right]
\end{aligned}
$$

Note: $\int_{-\infty}^{\infty} f_{x}(x) d x=1$

The flip side: Take $f_{x}(x)$ from the previous example and let $A=\{X<0\}$.

what's the conditional pdf of X given A ?
Answer The "long way": when $x \in A^{c}, f_{x}(x \mid A)=0$.

$$
P(A)=P(X<0)=1 / 2
$$

when $\dot{x} \in A$, the only non zero component is at $x=-1$, which is $\frac{1}{2} \delta(x+1)$.
so

$$
\begin{aligned}
f_{x}(x \mid A) & \left.=\left\{\begin{array}{cc}
\frac{1}{2} \delta(x+1) & x \in A \\
P(A) & x \in A^{c} \\
0 & \text { Note: } \\
& = \begin{cases}\delta(x+1) & \int f_{x}(x \mid A) d x=1\end{cases}
\end{array}\right) . \begin{array}{cc}
\infty & x
\end{array}\right)
\end{aligned}
$$

similarly, $P\left(A^{c}\right)=\int_{0}^{\infty} f_{x}(x) d x=1 / 4(3-1)=1 / 2$
so

$$
\begin{aligned}
& \text { so } f_{x}\left(x \mid A^{c}\right)=\left\{\begin{array}{cc}
\frac{\frac{1}{2}[u(x-1)-u(x-3)]}{P\left(A^{c}\right)} & x \in A^{c} \\
0 & x \in A
\end{array}\right. \\
&\left.f_{x}|x| A^{c}\right)=\frac{1}{2}[u(x-1)-u(x-3)] \quad \text { Note: } \\
& \int f_{x}\left(x \mid A^{c}\right) d x=1
\end{aligned}
$$

The intuitive way.
When $A=\{x<0\}$, we have just the $\delta(x+1)$ shape and it needs to be a pdf, so

$$
f_{x}(x \mid A)=\delta(x+1)
$$

when A^{c} happens, the remaining uncertainty has the uniform shape and it needs to be a pdf, so

$$
f_{x}\left(x \mid A^{c}\right)=\frac{1}{2}[u(x-1)-u(x-3)]
$$

The scaling happens automatically, and "just so happens" equal 1/P(A) (if A is the conditioning event.)

Another example of a mixed RV
The City Bus arrives at the busstop by your home every 15 minutes starting at 6 am . You arrive at the bus stop between 7:10 and 7:30, with the time being a uniform random variable in this interval. What is the pdf of the time you have to wait?
Answer:

$$
\begin{aligned}
& X=\text { your arrival time } \\
& Y=\text { your wait time }
\end{aligned} \quad \frac{f_{x}(x)}{7: 10} 2: 30 x
$$

Let $A=\{$ you get on the $7: 15$ bus $\}$

$$
A \cup B=S .
$$

$$
B=\{\text { you get on the } 7: 30 \text { bus }\}
$$

$$
A=\{7: 10 \leq x \leq 7: 15\}
$$

$$
B=\{7: 15<x \leq 7: 30\}
$$

Conditioned on A, your arrival is uniform $[7: 10,7: 15]$. so your wait conditioned on A is abouniform $[0,5]$

$$
f_{y}(y \mid A)=\left\{\begin{array}{cl}
1 / 5 & 0 \leq y \leq 5 \\
0 & \text { else }
\end{array}\right.
$$

Conditioned on B, your wait is uniform $[0,15]$.

$$
\begin{aligned}
f_{y}(y) & =f_{y}(y \mid A) P(A)+f_{y}(y \mid B) P(B) \\
& =\left\{\begin{array}{ll}
1 / 5 \cdot 1 / 4+1 / 15 \cdot 3 / 4 & 0 \leq y \leq 5 \\
1 / 15 \cdot 3 / 4 & 5<y \leq 15
\end{array}\right\}=\left\{\begin{array}{l}
1 / 10 \\
1 / 20
\end{array}\right.
\end{aligned}
$$

