Binomial RV, parameters n and $P\left(\begin{array}{cc}\text { Section 2.6.2 } \\ \text { and } & 3,5.2\end{array}\right)$
Repeat a Bernoulli trial/experiment
n independent times
$X=\#$ times event A happens in n trials

$$
S_{x}=\{0,1, \ldots, n\} \quad \text { (finite) }
$$

Each branch of the tree has the same depth, because you perron the subexperiments regardless of the outcome of the precious stage

Pick a single leaf node with k successes whats the probability of reaching that node?
p is the probability of one success
p^{k} is the probability of k successes
$(1-p)^{n-k}$ is the probability of $n-k$ failures

$$
\Rightarrow p^{k}(1-p)^{n-k}
$$

And how many leaf nodes have exact k success after n trials? $\quad\binom{n}{k}$
Combined, $p_{x}(k)=P(k$ successes in ntriab $)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Why $\binom{n}{k}$ on previous page? Counting

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad \text { symmetric: }\binom{n}{k}=\binom{n}{n-k}
$$

A quick counting lesson (section 2.3,1 and 2,3.2)
2.3.1 Sampling with replacement with order Choose k items from n possible items

- pan attention to the order when sampling
- we can have duplicates

Elements of the sample space are each an ordered k-tuple $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ Each element can be any of the n possible, so n^{k} possible elemento in the sample space
2.3.2 Sampling withant replacement with order

- pan attention to the order when sampling
- no duplicates allowed

Sample space contains k-tuples, but fewer. once the first item is picked, there's one fewer option

$$
\begin{aligned}
\text { so }|s| & =\underbrace{n \cdot(n-1)(n-2) \cdots(n-k+1)}_{k \text { numbers }} \\
& =\frac{n!}{(n-k)!}
\end{aligned}
$$

2.3.3 Permutations (how many ways can yo order k items?)
Among your k items, you can order them $k(k-1)(k-2) \ldots 1=k!$ different ways
2,3.4 Sampling withant replacement without order

- no duplicates allowed
- only important which items, not when they're
K objects from a set of n distinct objects
A 2-step process:
(1) choose which k ont of n items, paying attention to order (see 2.3.2)
$n!/(n-k)$! possible wens
(2) divide by the number of Times over counted (when we paid attention to order)
How many ways can you order k items?
$k!$ ways (see Sect 2,3,3)
Combining

$$
\frac{n!}{k!(n-k)!}=\binom{n}{k}=c_{k}^{n}
$$

This is the binomial coefficient, stated " nchoose k ".
BTW: can approximate n ! using Storting's formula

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

How does this relate to binomial RV?
Example 2.21 from section 2.3 .4 (no replacement $\begin{gathered}\text { no order } \\ \text { no }\end{gathered}$
In an urn, k white balls and $n-k$ black balls.
What is the number of distinct permutation? (how many ways can white + blacle balls be ordered?)
This problem is equivalent to the following problem:
Put n tokens numbered 1 to n milo a hat, Pick k tokens to tell you the position to put each white ball. The black balls fill in the gaps.
Each possible combination of k tokens crates a distinct permutation of k white and $n-k$ black balls.
The number of permutations is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Example: $n=5$ and $k=2$
Let "l" denote white ball and "0" denote black ball.

$$
\begin{array}{rl}
11000 & 01100 \\
10100 & 010110 \\
10010 & 01001 \\
10001 &
\end{array} \quad\binom{5}{2}=\frac{5!}{2!3!}=\frac{5 \cdot 4 \cdot 3 \cdot 2+1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}
$$

Example : Flip a (not necessarily fair) coin 3 times what is the probability of k heads?

sequence of flips	probability	\# heads
$H H H$	$p \cdot p \cdot p$	3
HHS	P.p(1-p)	2
HT	P(1-p)p	2
HT T	$P(1-p)^{2}$	1
TH	$(1-p) p^{2}$	2
TH T	$(1-p)^{2} p$	1
TTH	$(1-p)^{2} p$	1
TIT	$(1-p)^{3}$	0

let $p=P(H)$

$$
1-P=P(T)
$$

$x=\#$ heads

$$
\text { Binomial: } p_{x}(k)=\binom{3}{k} p^{k}(1-p)^{n-k}
$$

x	$p_{x}(x)$	
0	$(1-p)^{3}$	$=\binom{3}{0} p^{0}(1-p)^{3}$
1	$3 p(1-p)$	$=\binom{3}{1} p^{1}(1-p)^{2}$
2	$3 p^{2}(1-p)$	$=\binom{3}{2} p^{2}(1-p)^{1}$
3	p^{3}	$=\binom{3}{3} p^{3}(1-p)^{0}$

Two applications of binomial RVs

1) Resource allocation'
2) Error correcting codes

Resource allocation: You want to buy "resources" to handle customers, but you know not all your customers will need the resources at once.
How many resources should you buy to make sue the probability there anent enough resources is less than some value?

Example 2.39 Packet voice
Yon decide to admit up to $n=8$ customers at a time, Knowing each will only be spealeing for a fraction' of the time. But you only have enough bandwidth to actually send voice from 6 speakers at a time. If each speaker is active with probability $p=1 / 3$, what is the probability, there are moe than 6 speakers (ie, what is the probability of overloaded)
Answer: 8 independent Bernoulli trials
$N=\#$ active speakers of the 8

$$
\begin{aligned}
& N=\# \text { active speakers of the } \\
& P_{N}(K)=\binom{8}{K} P^{K}(1-P)^{8-K} \quad \text { where } p=1 / 3 \\
& P(N>10)=P(N=7)+P(N=8)
\end{aligned}
$$

want

$$
\begin{aligned}
P(N & >6)=P(N=7)+P(N=8) \\
& =\binom{8}{7} P^{7}(1-P)+\binom{8}{8} P^{8}
\end{aligned}
$$

$=0.00259 \Rightarrow$ less them 1% of time

Related question
what value of n will maximize your revenue if the probability of overload is less than 1\%?

$$
\begin{gathered}
P(\text { overload })=P(N>6)<0.01 \\
\sum_{k=7}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}<0.01
\end{gathered}
$$

example: $n=q$

$$
\begin{aligned}
& \text { be: } n=9 \\
& \begin{aligned}
(q) p^{1}(1-p)^{2} & +\binom{q}{8} p^{8}(1-p)+\binom{q}{9} p^{9} \\
& =0.008281<0.01
\end{aligned}
\end{aligned}
$$

example: $n=10$

$$
\begin{aligned}
& n=10 \\
& \binom{10}{7} p^{3}(1-p)^{3} \approx 0.016>0.01
\end{aligned}
$$

It's important to be able to read the English and map it into equivalent math.

Error correcting codes (example 2.40) You send bits across a channel, but each bit arrives in error with probability of bit error $p=10^{-3}$.
To uncreare the chance of correct delivery, yon send the desired bit 3 time's.
The decode makes a majority decision (ie., if 2 or 3 bits $\operatorname{say} \theta$, decide 0).
What the probability of an incorrect decision?
Answer 3 midependent Bernoulli trials,
event $A=\{$ bit is received in error $\}$
Binomial $n=3, P=P(A)=10^{-3}$

$$
\begin{aligned}
& P(\text { wrong decision })=P(2 \text { or more bit errors }) \\
& =P(2 \text { bit errors })+P(3 \text { Git errors }) \\
& =\binom{3}{2} p^{2}(1-p)+\binom{3}{3} p^{3} \\
& \\
& \approx 3 * 10^{-6}
\end{aligned}
$$

Error correcting codes are a major component of almost all communication systems. They can be made much more sophisticated than this simple "send in triplicate" strategy

Mean, variance, of binomial RV
Approach 1: A binomial RV can he considered to be the sum of n independent Bernoulli RVs.
if $X \sim \operatorname{binomial}(n, p)$,
and $y_{i} \sim$ Bernoulli (ρ) for $i=1, \ldots, n$,
then $x=y_{1}+y_{2}+\cdots+y_{n}$
So its easy to compute

$$
\begin{aligned}
E(x) & =E\left(y_{1}+y_{2}+\cdots+y_{n}\right) \\
& =E\left(y_{1}\right)+E\left(y_{2}\right)+\cdots+E\left(y_{n}\right) \\
& =p+p+\cdots+p \\
& =n p
\end{aligned}
$$

Approach 2 (next page) uses a series summation

Approach 2 to compute $E(x)$ for binomial $R V$

$$
E(x)=\sum_{k=0}^{n} k p_{x}(k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(l-p)^{n-k}
$$

expand

$$
=\sum_{k=0}^{n} k \underbrace{\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}}
$$

can replace reorganize

$$
=\sum_{k=1}^{n} \frac{n(n-1)!}{(k-1)!(n-k)!}(p) p^{k-1}(1-p)^{n-k}
$$

change of variables - substitute $j=k-1$ so $k=j+1$

$$
=n p \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j}
$$

this is the sum of pmf terms for a binomial $R V w /(n-1, p)$
so

$$
E(x)=n p
$$

Variance of a binomial $(n, p) R V$

$$
\begin{aligned}
E\left(x^{2}\right) & =\sum_{n=0}^{k} k^{2} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{n=1}^{n} k \frac{n!}{(k-1)!(n-k)!p^{k}(1-p)^{n-k}}
\end{aligned}
$$

Let $j=k-1$ and $k=j+1$

$$
=n p \sum_{j=0}^{n-1} \underbrace{(j+1)} \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j}
$$

Break into 2 sums:

$$
\begin{aligned}
& \text { Le into } 2 \text { sums: } \\
& =n p \sum_{j=0}^{n-1} j \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j} \\
& +n p \sum_{j=0}^{n-1} \frac{(n-1)!}{j!(n-1-j)!} p^{j}(1-p)^{n-1-j} \\
& \text { term is np times }
\end{aligned}
$$

First term is $n p$ times $E(y)$ where y is binomial with $((n-1), p)$ second term is np lime's the sum of a PMF.

$$
=n p((n-1) p+1)=n^{2} p^{2}-n p^{2}+n p
$$

Finally: $\operatorname{Var}(x)=E\left(x^{2}\right)-E(x)^{2}$

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(x)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-(n p)^{2}
\end{aligned}
$$

$$
\operatorname{Var}(x)=n p(1-p)
$$ n times the variance of a Bernoulli (p)

