Topic 2.3: Moments

We do 4 things in this class

3

Topic_3: Moments of RVs (Chapter 3.3 and 4.3)
Once we know
$$p_X(x)$$
, $f_X(x)$, or $F_X(x)$, we
know everything about the probability
model for the RV X.
But it may take a lot of detail to convey.
Some times, we just care about summary information.
minimum
maximum
* mean
mode most common value
median most common value
will have an outcome
imiddle": half of experiments
percentile (quartile)
* standard deviation
* variance
* n⁴⁴ moments
Expected value (mean)
 $m_X = \mu_X = E(X)$
 $E(x) = \sum_{x \in S_X} x p_X(x)$
 $E(x) = \int_{-\infty}^{\infty} f_X(x) dx$ for continuous X
(Defined only if this sum or integral converges absolutely)

Examples (discrete RV) Bernoulli RV $p_{X}(x) = \begin{cases} 1-p & x=0 \\ p & x=1 \end{cases}$ ELX) = $\sum_{x \in S_{X}} x p_{X}(x)$ = $0 \cdot (1-p) + 1-p = p$

Uniform Discrete RV

$$f_{X}(x) = \frac{1}{M}$$
 for each $x \in S_{X}$
Suppose $S_{X} = \{0, 1, ..., M-1\}$
 $E(X) = \sum_{X \in S_{X}} x \cdot p_{X}(X) = 0 \cdot \frac{1}{M} + 1 \cdot \frac{1}{M} + \cdots + (M-1)\frac{1}{M}$
 $= \frac{1}{M} \sum_{i=0}^{M-1} i = \frac{1}{M} \frac{m(M-1)}{2} = \frac{M-1}{2}$
Note: if M is even, say, $M=6$, then
 $E(X) = \frac{6-1}{2} = \frac{5}{2}$. This is $0K$, even
though $E(X)$ is not
a member of S_{X} .

Examples (discrede RV)
-the 3-game series, alternating home and away.
X = # times them C wins
Y = # games the teams play

$$p_{X}(x) = \begin{cases} p(1-p) & x=0 \\ p^{2}(1-p) + (1-p)^{3} & x=1 \\ (p(1-p) + p^{3} + (1-p)^{2}p) & x=2 \end{cases}$$

 $p_{Y}(y) = \begin{cases} 2 p(1-p) & y=2 \\ (1-2p(1-p)) & y=3 \end{cases}$
 $E(X) = \sum_{X \in S_{X}} \chi p_{X}(X)$
 $= 0 \cdot p(1-p) + 1 \left\{ p^{2}(1-p) + (1-p)^{3} \right\}$
 $+ 2 \left\{ p(1-p) - p^{3} + (1-p)^{2}p \right\}$
 $= p^{2} - p^{3} + 1 - 3p + 3p^{2} - p^{3} + 2p - 2p^{2} + 2p^{3} + 2p - 4p^{3} + 2p^{3} = 2p^{3} - 2p^{2} + p + 1 \quad (if | did the meth right)$
 $E(Y) = \sum_{Y \in S_{Y}} \chi p_{Y}(Y) = 2 \left\{ 2 p(1-p) \right\} + 3 \left\{ 1 - 2p(1-p) \right\}$

Examples (continuous RV) Exponential RV $f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & \chi \geqslant 0 \\ 0 & \text{else} \end{cases}$ $E(x) = \int x f_{x}(x) dx = \int \lambda x e^{-\lambda x} dx$ Integrate by parts. Judr=ur-frdu u = x $dv = \lambda e^{-\lambda x} dx$ $du = d\chi$ $\gamma = -e^{-\lambda\chi}$ $E(X) = -\chi e^{-\lambda \chi} \Big|_{x}^{\infty} + \int_{x}^{\infty} e^{-\lambda \chi} d\chi$ $= -\chi e^{-\lambda \chi} \bigg|_{0}^{\infty} - \frac{1}{\lambda} e^{-\lambda \chi} \bigg|_{0}^{\infty}$ $= -(0-0) - \frac{1}{\lambda}(0-1) = \left|\frac{1}{\lambda}\right|$ mean of an exponential RV with pavameter & is 1/2.

Expectation of a function of a RV
(chapter 3.3.1)
what if we know
$$p_x(x)$$
 and we
have another RV $Y = g(x)$. what $E(Y)$?

Example: X is a voltage, among the set

$$S_{x} = \{2, -2, -1, 0, 1, 2, 3, 4, 5\}$$

where all one equally likely: $p_{x}(x) = \{\frac{1}{8} \ x \in S_{x} \ 0 \ else$.

We know how to compute

$$E(X) = \sum_{X \in S_X} x \cdot p_X(x) = \frac{1}{8} \begin{bmatrix} -2 + -1 + 0 + 1 \\ +2 + 3 + 4 + 5 \end{bmatrix} = \frac{12}{8} = \frac{3}{2}$$
Let $Y = X^2$ Find $E(Y) = M_Y$.
Method I: Find $S_Y = \begin{cases} 0, 1, 4, 9, 16, 25 \end{cases}$
() Find $p_Y(y)$
 $\frac{x}{0} \begin{bmatrix} y \\ y \\ 0 \end{bmatrix} \begin{bmatrix} p_Y(y) \\ 2 \end{bmatrix} E(Y) = \sum_{y \in S_Y} y \cdot p_Y(y)$
 $\frac{y}{0} \begin{bmatrix} y \\ y \\ y \end{bmatrix} = 0(\frac{1}{8}) + 1(\frac{2}{8})$
 $-1, +1 \begin{bmatrix} 1 \\ 28 \\ -2, +2 \end{bmatrix} \begin{bmatrix} y \\ 4 \\ 18 \\ -2 \end{bmatrix} + \frac{16}{18} + \frac{16}{1$

Method 2: what if you just want
$$E(Y)$$
,
and don't care about $P_Y(Y)$?
 $E(Y) = E(X^2) = \sum_{x \in S_X} x^2 p_x(x) = \frac{1}{8} \begin{bmatrix} 4+1+0+1+4\\ +9+16+25 \end{bmatrix}$
 $= 7.5$

Law of the Unconsciono Statistician (LOTUS)

Another way to look at the same example

	$\chi^2 P_X(\chi)$	$\int f_{x}(x)$	$ \sim$	y=x	$\left P_{y} \right \left y \right $	١	$y P_y(y)$
	0	'/8	0	О	1/8		D
	1/8	'/8 `/8	- +	١	2/8		2/8
	4/8 4/8	'/8 '/8	-2 +2	Ч	2/8		8/8
	9/8	78	+3	9	1/8		9/8
	16/8	Y8	+4	16	1/8		16/8
	25/8	48	+5	25	1/8		25/8

5um 6%

 $= \sum_{x \in S_{X}} x^{2} p_{X}(x)$

Sum 60/8 =5 y Py (y) yesy

Proper lies of
$$E(x)$$

Linearity: $E[g(x) + h(x)] = E[g(x)] + E(h(x)]$
Scale: $E[cx] = cE(x)$ (where c is constant)
DC shift: $E[x+d] = E[x] + d$ (where d is a constant)
 $E(d) = d$ (where d is a constant)
Applying properties of Expectation

Example: Let X be a noise voltage, uniformly $S_{X} = \{-3, -1, 1, 3\}$ Let Y = 2X + 10. Let $Z = Y^{2}$. What is E(Z)? So [ution: $E(Z) = E(Y^{2}) = E((2X + 10)^{2})$ $= E(4X^{2} + 40X + 100)$ $= 4E(X^{2}) + 40E(X) + 100$ Compute E(X) = 0; $E(X^{2}) = \frac{1}{4}(9 + 1 + 1 + 9) = 5$ So E(Z) = 20 + 100 = 120

Example:
$$X = \text{temperature in }^{\circ}F$$

 $Y = \text{temperature in }^{\circ}C$
 $Y = (X - 32)\frac{5}{9}$
 $E(Y) = \frac{5}{9}(E(X) - 32)$

15
$$E(g(x)) = g(E(x))$$
?
In general, no! Example, $E(x^{2}) \neq (E(x))^{2}$
in general

Variance (and standard deviation) of a RV
(chapter 3.3.2)
mean is often called the first moment of X

$$E(X) = 1^{2t}$$
 moment
 $E(X^2) = 2nd$ moment
 $E(X^2) = 2nd$ moment
 $E(X^2) = 2nd$ moment
 $E(X^2) = 2nd$ moment
 $\nabla_X^2 = 2nd$ moment
 $\nabla_X^2 = VAR(X) = E((X - m_X)^2)$
central moments measure moments of the RV
with the mean removed \Rightarrow "centralized"
 \Rightarrow Variance describes how much X varies
abort its mean during different
experiments.
Since $(X - m_X)^2$ is a function of X,
we can compute
 $VAR(X) = \int_{X \in S_X}^{\infty} (x - m_X)^2 f_X(x) dx$
 $VAR(X) = \int_{X \in S_X}^{\infty} (x - m_X)^2 f_X(x) dx$
 RV_S

$$VAR(X) = \int_{-\infty}^{\infty} (\chi - M_{\chi})^2 f_{\chi}(\chi) d\chi$$

Standard deviation $\sigma_{\chi} = STD(\chi) = \sqrt{VAR(\chi)}$ why standard deviation and not variance? Units! or 2 has units (units of X) or has nuits (units of X) unit: meters, feet, pounds, Kg/m2 Example: the temperature in July is on average 85°F with a standard deviation of 10°F A short cut for computing variance $Var(X) = E((X - M_x)^2)$ = $E(X^2 - 2X m_x + m_x^2)$ $= E(x^2) - 2m_x E(x) + m_x^2$ $Var(X) = E(X^2) - M_X^2$ 1'll often express this as $Var(X) = E(X^2) - E(X)^2$ Note: $E(X^2) = Var(X) + E(X)^2$ $= \sigma^2 + \mu^2$

Warning about computing
variance on a computer
method 1
sum1 =0
sum2 =0
for i=1:n
sum1 +=
$$x(n)$$

sum 1 /= n
sum 2 /= h
var = sum2 - sum1*sum1
Implemento
 $E(x^2) - E(x)^2$
If n is very large, why might
these not give the same numerical

accurate?. (The difference is also magnified when most x(n) one near E(X))

result? Which one will be more

Variance examples $X_{A} = \begin{cases} 1 & event A \\ 0 & else \end{cases}$ Bernonlli RV. Recall $S_{x} = \{ 0, 1 \}$ $P_{\times}(o) = |-p|$ $p_{\lambda}(I) = P(A) = P$ $E(X_A) = 0 \cdot p_X(0) + 1 \cdot p_X(1) = P.$ $Var(X_A) = E(X^2) - E(X)^2$ $= \left[\left. 0^{2} p_{x}(0) + 1^{2} p_{x}(1) \right| - p^{2} \right]$ $= p - p^{2} = \left[p(1-p) \right]$ Coin pss w/a biased coin (symmetric) Var(XA) 1/4 Variance of a Bernonlli RV is small if 1/z P pio small or if pio near 1. Variance à largest when $p = \frac{1}{2}$

$$M_{X} = 0$$

$$Var(X) = E(X^{2}) - M_{X}^{2} = E(X^{2})$$

$$= \frac{1}{2}(+1)^{2} + \frac{1}{2}(-1)^{2} = 1$$

$$M_{X} = 0$$

$$Var(X) = E(X^{2}) - M_{X}^{2} = E(X^{2})$$

$$= \frac{1}{2}(+1000)^{2} + \frac{1}{2}(-1000)^{2}$$

$$= 1,000,000$$

STD(X) = 1000
c) X = # heads in 3 tosses of a fair coin
 $E(X) = \sum_{i=0}^{3} i(\frac{3}{i})(\frac{1}{2})^{i}(\frac{1}{2})^{3-i}$
 $= 0(\frac{1}{8}) + 1(\frac{3}{8}) + 2(\frac{3}{8}) + 3(\frac{1}{8}) = \frac{12}{8} = 1.5$
 $Var(X) = E(X^{2}) - E(X)^{2}$
 $= \left[0^{2}(\frac{1}{8}) + 1^{2}(\frac{3}{8}) + 2^{2}(\frac{3}{8}) + 3^{2}(\frac{1}{8})\right] - (\frac{3}{2})^{2}$
 $= \frac{24}{8} - \frac{9}{4} = \frac{9}{8} = \frac{3}{4}$

Properties of Variances
(1)
$$Var(X) \ge 0$$
 always
(2) $Var(X+c) = Var(X)$ if c is constant
 $Proof:$
 $Var(X+c) = E((X+c)^2) - E(X+c)^2$
 $= E((x^2+2cX+c^2) - (E(X)^2+2cE(X)+c^2)]$
 $= E(X^2) + 2cE(X) + c^2 - E(X)^2 - 2cE(X) - c^2$
 $= E(X^2) - E(X)^2 = Var(X)$
This makes sense. Adding a constant doesn't
change how much variation there is about
the mean
 $f_{X}(x)$
 $f_{X}(x) = c^2 Var(X)$ if c is a constant
 $proof: Var(cX) = E((x)^2) - E(cX)^2$
 $= E(c^2X^2) - c^2 E(X)^2 = c^2 [E(X^2) - E(X)^2]$
 $= c^2 Var(X)$

(4) Var(c) = 0 if cio a constant

Companison of properties

mean	variance
E(aX) = aE(X)	$Var(aX) = a^{2}Var(X)$
E(X+Y) = E(X) + E(Y)	Var(X+Y) ≠ Var(X) + Var(Y) (more on this later)
	(more on this later)
E(X + a) = E(X) + a if a is constant	Var(X+a) = Var(X) if a io constant
$Xmin \leq E(X) \leq Xmax$	$Var(X) \neq 0$