Topic 2.3: Moments

We do 4 things in this class
(1) Build model

* counting when all elements of discrete sample space are equally likely
* conditional events
* any $g(x) \geqslant 0$ that is piecewise continnono with finite integral.
(2) Compute probabilities for a given model
* Axioms of probability
* pm, pdf,cdf
(3) Learn
* Bayes Rule
(4) compute summary statistics - expected value, variance, moment o

Topic 2.3: moments of RVs (Chapter 3.3 and 4.3)
Once we know $p_{x}(x), f_{x}(x)$, or $F_{x}(x)$, we know everything about the probability model for the RV X.
But it may take a lot of detail to convey.
Sometimes, we just cone about summary information.
minimum
maximum

* mean
mode \qquad most common value median \qquad "middle": half of experiments percentile (quartile)
* standard deviation will have an outcome larger than the median
* variance
* nth moments

Expected value (mean) areal number, even if X is discrete

$$
\begin{aligned}
& m_{x}=\mu_{x}=E(x) \\
& \left.E(x)=\sum_{x \in S_{x}} x p_{x} \mid x\right) \\
& E(x)=\int_{-\infty}^{\infty} x f_{x}(x) d x
\end{aligned}
$$

for discrete X,
when $S_{x}=\left\{x_{1}, x_{2}, \ldots\right\}$
for continuous X
(Defined only if this sum or integral converges absolutely)

Examples (discrete RV)
Bernoulli RV $\quad p_{x}(x)=\left\{\begin{array}{cl}1-p & x=0 \\ p & x=1\end{array}\right.$

$$
\begin{aligned}
E(x) & =\sum_{x \in S_{x}} x p_{x}(x) \\
& =0 \cdot(1-p)+1-p=p
\end{aligned}
$$

Uniform Discrete RV

$$
p_{x}(x)=\frac{1}{m} \quad \text { fo each } x \in S_{x}
$$

Suppose $S_{x}=\{0,1, \ldots, m-1\}$

$$
\begin{aligned}
E(x) & =\sum_{x \in S_{x}} x p_{x}(x)=0 \cdot \frac{1}{m}+1 \cdot \frac{1}{m}+\cdots+(m-1) \frac{1}{m} \\
& =\frac{1}{m} \sum_{i=0}^{m-1} i=\frac{1}{m} \frac{m(m-1)}{2}=\frac{m-1}{2}
\end{aligned}
$$

Note: if μ is even, say, $M=6$, then
$E(x)=\frac{6-1}{2}=\frac{5}{2}$. This is oK, even thangh $E(X)$ is not a member of S_{x}.

Examples (discrete RV)
The 3-game series, alternating home and away. $x=\#$ times team C wins
$y=\#$ games the teams play

$$
\left.\left.\begin{array}{rl}
p_{x}(x) & = \begin{cases}p(1-p) & x=0 \\
p^{2}(1-p)+(1-p)^{3} & x=1 \\
p(1-p)+p^{3}+(1-p)^{2} p & x=2\end{cases} \\
p_{y}(y) & = \begin{cases}2 p(1-p) & y=2 \\
1-2 p(1-p) & y=3\end{cases} \\
E(x) & =\sum_{x \in S_{x}} x p_{x}(x) \\
& =0 \cdot p(1-p)+1 \cdot\left\{p^{2}(1-p)+(1-p)^{3}\right] \\
+2\left[p(1-p)+p^{3}+(1-p)^{2} p\right] \\
& =p^{2}-p^{3}+1-3 p+3 p^{2}-p^{3}+2 p-2 p^{2}
\end{array}\right] \begin{array}{rl}
+2 p^{3}+2 p-4 p^{2}+2 p^{3}
\end{array}\right] \begin{array}{ll}
E(y) & =\sum_{y \in S_{y}} y p_{y}(y)=2[2 p(1-p)]+3[1-2 p(1-p)] \\
& =4 p(1-p)-6 p(1-p)+3=3-2 p(1-p)
\end{array}
$$

Examples (continuous RV)
Continuous uniform RV (section 4.4.1)
A uniform RV in the interval $[a, b]$ has PDF

$$
\begin{aligned}
& f_{x}(x)=\left\{\begin{array}{cl}
1 /(b-a) & a \leq x \leq b \\
0 & \text { else }
\end{array}\right. \\
& \begin{aligned}
E(x) & =\int_{-\infty}^{\infty} x f_{x}(x) d x=\int_{a}^{b} \frac{x}{b-a} d x \\
& =\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2} \quad \text { if } b \neq a .
\end{aligned}
\end{aligned}
$$

$E(x)=\frac{b+a}{2}$ the middle.
Intuitively, $E(x)$ is the balance point, the center of mass.

Examples (continuous RV)
Exponential RV

$$
\begin{aligned}
& f_{x}(x)=\left\{\begin{array}{cl}
\lambda e^{-\lambda x} & x \geqslant 0 \\
0 & \text { else }
\end{array}\right. \\
& E(x)=\int_{-\infty}^{\infty} x f_{x}(x) d x=\int_{0}^{\infty} \lambda x e^{-\lambda x} d x
\end{aligned}
$$

Integrate by parts. $\int u d v=u v-\int v d u$

$$
\begin{array}{rl}
u=x & d v=\lambda e^{-\lambda x} d x \\
d u=d x \quad v=-e^{-\lambda x} \\
E(x) & =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty} \\
& =-(0-0)-\frac{1}{\lambda}(0-1)=\frac{1}{\lambda}
\end{array}
$$

mean of an exponential RV with parameter λ is $1 / \lambda$.

Expectation of a function of a RV (chapter 3.3.1)
what if we know $p_{x}(x)$ and we have another RV $y=g(x)$. What' $E(y)$?

Example: Xis a voltage, among the set

$$
S_{x}=\{-2,-1,0,1,2,3,4,5\}
$$

where all are equally likely: $p_{x}(x)=\left\{\begin{array}{cc}1 & x \in S_{x} \\ 0 & \text { else. }\end{array}\right.$
We know how to compute

$$
E(x)=\sum_{x \in S_{x}} x-p_{x}(x)=\frac{1}{8}\left[\begin{array}{r}
-2+1+0+1 \\
+2+3+4+5]=\frac{12}{8}=\frac{3}{2}
\end{array}\right.
$$

Let $y=x^{2}$ Find $E(y)=m_{y}$.
Method 1: Find $S_{y}=\{0,1,4,9,16,25\}$
(1) Find $p_{y}(y)$

x	y	$p_{y}(y)$	(2) $E(y)=\sum_{y \in s_{y}} y p_{y}(y)$	
0	0	$1 / 8$	$=0\left(\frac{1}{8}\right)+1\left(\frac{2}{8}\right)$	
$-1,+1$	1	$4 / 8$	using	$+4\left(\frac{2}{8}\right)+9\left(\frac{1}{8}\right)$
$-2+2+$	4	$2 / 8$	the	$+16\left(\frac{1}{8}\right)+25\left(\frac{1}{8}\right)$
3	9	$1 / 8$	$+16(1 / 8$	
4	16	$1 / 8$	$=7.5$	
5	25	$1 / 8$	$=7.5$	

Method 2: what if you just want $E(Y)$, and don't care abort py(y)?

$$
\begin{aligned}
E(y)=E\left(x^{2}\right)=\sum_{x \in S_{x}} x^{2} p_{x}(x) & =\frac{1}{8}[4+1+0+1+4 \\
& +9+16+25] \\
& =7.5
\end{aligned}
$$

More generally:

$$
\begin{aligned}
& E(y)=E(g(x))=\sum_{x \in \delta_{x}} g(x) p_{x}(x) \sqrt[\begin{array}{c}
\begin{array}{c}
\text { discrete } \\
R V_{s}
\end{array} \\
E(y)=E(g(x))=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x \quad \begin{array}{c}
\text { continuous } \\
R V_{s}
\end{array}
\end{array}]{\$} .
\end{aligned}
$$

Why? if we group terms of x that map to the same $y=g(x)$

$$
\begin{aligned}
& E(y)=\sum_{y \in S_{y}} y\left[\sum_{\uparrow} p_{x}(x)\right] \\
&=\sum_{y \in S_{y}} y P_{y}(y) \quad \begin{aligned}
\text { sumis over those } \\
x \text { such that } g(x)=y
\end{aligned} \\
&\text { (which is } \left.p_{y}(y)\right)
\end{aligned}
$$

Law of the Unconscions Statistician (LOTUS)

Another way to look at the same example

Properties of $E(x)$
Linearity: $E(g(x)+h(x))=E(g(x))+E(h(X))$
Scale: $\quad E(c X)=c E(X)$ (where is constant)
DC shift: $E(X+d)=E(X)+d \quad$ (where d is a constrict)

$$
E(d)=d
$$

$$
\text { (where } d \text { is a constant) }
$$

Applying properties of Expectation
Example: Let x be a noise voltage, uniformly distributed

$$
S_{x}=\{-3,-1,1,3\}
$$

Let $y=2 x+10$. Let $z=y^{2}$. What is $E(z)$?
Solution: $E(z)=E\left(y^{2}\right)=E\left((2 x+10)^{2}\right)$

$$
\begin{aligned}
& =E\left(4 x^{2}+40 x+100\right) \\
& =4 E\left(x^{2}\right)+40 E(x)+100
\end{aligned}
$$

Compute $E(X)=0 ; E\left(X^{2}\right)=\frac{1}{4}(9+1+1+9)=5$
So $E(z)=20+100=120$

Example: $\quad x=$ temperature in ${ }^{\circ} F$
$y=$ temperature in ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& y=(x-32) \frac{5}{9} \\
& E(y)=\frac{5}{9}(E(x)-32)
\end{aligned}
$$

is $\quad E(g(x))=g(E(x))$?
In general, no! Example, $E\left(X^{2}\right) \neq(E(X))^{2}$ in general

Variance (and standard deviation) of a RV
(Chapter 3.3.2)
mean is often called the first moment of X

$$
\begin{aligned}
& E(X)=1^{\frac{s t}{}} \text { moment } \\
& E\left(X^{2}\right)=2 n d \text { moment } \\
& E\left(X^{n}\right)=n^{\text {th }} \text { moment }
\end{aligned}
$$

Variance is the and central moment

$$
\sigma_{x}^{2}=\operatorname{VAR}(x)=E\left(\left(x-m_{x}\right)^{2}\right)
$$

Central moments measme moments of the RV
with the mean removed \Rightarrow "centralized"
\Rightarrow Variance describes how much X varies about its mean during different expenmento,
Since $\left(X-m_{x}\right)^{2}$ io a function of X, we can compute

$$
\begin{aligned}
& \operatorname{VAR}(x)=\sum_{x \in S_{x}}\left(x-m_{x}\right)^{2} p_{x}(x) \\
& \operatorname{VAR}(x)=\int_{-\infty}^{\infty}\left(x-m_{x}\right)^{2} f_{x}(x) d x
\end{aligned}
$$

discrete

$$
R V_{S}
$$

continuous RV_{s}

Standard deviation'

$$
\sigma_{x}=\operatorname{STD}(x)=\sqrt{\operatorname{VAR}(x)}
$$

why standard deviation and not variance?
Units! σ_{x}^{2} has units (units of $\left.x\right)^{2}$
σ_{x} has units (units of X)
unit : meters, feet, pounds, $\mathrm{Kg} / \mathrm{m}^{2}$
Example: the temperature in July is on average $85^{\circ} \mathrm{F}$ with a standard deviation of $10^{\circ} \mathrm{F}$

A short cut for computing variance

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left(\left(x-m_{x}\right)^{2}\right) \\
& =E\left(x^{2}-2 x m_{x}+m_{x}^{2}\right) \\
& =E\left(x^{2}\right)-2 m_{x} E(x)+m_{x}^{2} \\
\operatorname{Var}(x) & =E\left(x^{2}\right)-m_{x}^{2}
\end{aligned}
$$

Ill often express this as

$$
\operatorname{Var}(x)=E\left(x^{2}\right)-E(x)^{2}
$$

Note:

$$
\begin{aligned}
E\left(x^{2}\right) & =\operatorname{Var}(x)+E(X)^{2} \\
& =\sigma^{2}+\mu^{2}
\end{aligned}
$$

Warning about computing variance on a computer
method 1
sums) $=0$
sum $2=0$
for $i=1: n$
$\operatorname{sum} 1+=x(n)$
$\operatorname{sum} 2+=x(n)^{\wedge} 2$
end
sum 1 $/=n$
sum $21=n$

$$
\operatorname{var}=\operatorname{sum} 2-\operatorname{sum}|* \operatorname{sum}|
$$

implements

$$
E\left(x^{2}\right)-E(X)^{2}
$$

method 2
$\operatorname{sum} 1=0$
for $i=1: n$

$$
\operatorname{sum} \mid t=x \ln)
$$

end

$$
\operatorname{sum} / /=n
$$

$\operatorname{sum} 2=0$
for $i=1: n$

$$
\begin{aligned}
& \text { for } i=1 \cdot n \\
& \text { sum } 2 t=(x(n)-\operatorname{sum} \mid)^{n} 2 \\
& \text { end }
\end{aligned}
$$

$\operatorname{sum} 2 /=n$
var $=\operatorname{sum} 2$
implement o

$$
E\left((X-E(X))^{2}\right)
$$

If n is very large, why might these not give the same numerical result? Which one will be more accurate?
(The difference is also magnified when most $x(n)$ ave near $E(x)$)

Variance examples
Bernoulli RV. Recall

$$
\left.\begin{array}{l}
S_{x}=\{0,1\} \\
p_{x}(1)=p(A)=p \quad p_{x}(0)=1-p \\
E\left(X_{A}\right)
\end{array}=0 \cdot p_{x}(0)+1 \cdot p_{x}(1)=p .\right\} \begin{aligned}
\operatorname{Var}\left(X_{A}\right) & =E\left(X^{2}\right)-E(x)^{2} \\
& =\left[0^{2} p_{x}(0)+1^{2} p_{x}(1)\right]-p^{2} \\
& =p-p^{2}=p(1-p)
\end{aligned}
$$

Coin toss w/ a biased coin

(symmetric)
Variance of a
Bernoulli RV is small of pis small or if pis near 1. Variance is longest when $p=1 / 2$

Variance examples

$$
\begin{aligned}
& m_{x}=0 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-m_{x}^{2}=E\left(x^{2}\right) \\
&=\frac{1}{2}(+1)^{2}+\frac{1}{2}(-1)^{2}=1
\end{aligned}
$$

b)

$$
\begin{aligned}
& p_{x}(x)=\left\{\begin{array}{cc}
1 / 2 & x=+1000 \\
1 / 2 & x=-1000 \\
0 & \text { else }
\end{array} \begin{array}{rl}
1 / 2
\end{array} p_{x}(x)\right. \\
& m_{x}=0 \\
& \operatorname{Var}(x)=E\left(x^{2}\right)-m_{x}^{2}=E\left(x^{2}\right) \\
&=\frac{1}{2}(+1000)^{2}+\frac{1}{2}(-1000)^{2} \\
&=1,000,000 \\
& \operatorname{STD}(x)=1000
\end{aligned}
$$

c) $x=\#$ heads in 3 tosses of a fair coin

$$
\begin{aligned}
E(x) & =\sum_{i=0}^{3} i\binom{3}{i}\left(\frac{1}{2}\right)^{i}\left(\frac{1}{2}\right)^{3-i} \\
& =0\left(\frac{1}{8}\right)+1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)=\frac{12}{8}=1.5 \\
\operatorname{Var}(x) & =E\left(x^{2}\right)-E(x)^{2} \\
& =\left[0^{2}\left(\frac{1}{8}\right)+1^{2}\left(\frac{3}{8}\right)+2^{2}\left(\frac{3}{8}\right)+3^{2}\left(\frac{1}{8}\right)\right]-\left(\frac{3}{2}\right)^{2} \\
& =\frac{24}{8}-\frac{9}{4}=\frac{6}{8}=\frac{3}{4}
\end{aligned}
$$

Properties of Variances
(1) $\operatorname{Var}(x) \geqslant 0$ always
(2) $\operatorname{Var}(X+c)=\operatorname{Var}(x)$ if c is constant proof:

$$
\begin{aligned}
& \operatorname{Var}(x+c)=E\left((x+c)^{2}\right)-E(x+c)^{2} \\
& \quad=E\left(x^{2}+2 c x+c^{2}\right)-\left[E(x)^{2}+2 c E(x)+c^{2}\right] \\
& \quad=E\left(x^{2}\right)+2 c E(x)+c^{2}-E(x)^{2}-2 c E(x)-c^{2} \\
& \quad=E\left(x^{2}\right)-E(x)^{2}=\operatorname{Var}(x)
\end{aligned}
$$

This makes sense. Adding a constant doesint change how much variation thee e is about the mean

(3) $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ if c is a constant proof: $\operatorname{Var}(c x)=E\left((c x)^{2}\right)-E(c x)^{2}$

$$
\begin{aligned}
=E\left(c^{2} x^{2}\right)-c^{2} E(x)^{2} & =c^{2}\left[E\left(x^{2}\right)-E(x)^{2}\right] \\
& =c^{2} \operatorname{Var}(x)
\end{aligned}
$$

(4) $\operatorname{Var}(c)=0$ if c is a constant

Comparison of properties
$\left.\left.\begin{array}{c|c}\text { mean } & \text { Variance } \\ \hline E(a X)=a E(X) & \operatorname{Var}(a X)=a^{2} \operatorname{Var}(X) \\ \hline E(X+Y)=E(X)+E(Y) & \begin{array}{l}\operatorname{Var}(X+Y) \neq \operatorname{Var}(X) \\ (\text { more on this later })\end{array} \\ \hline \operatorname{Var}(Y)\end{array}\right] \begin{array}{l}\operatorname{Var}(X+a)=\operatorname{Var}(X) \\ \text { if } a \text { is constant }\end{array}\right]$

