Topic 2.2b

probability density function (chapter 4.2) $f_{x}(x) = \frac{d}{dx} F_{x}(x)$ (except not Ch 4.2.2)

Book claims $f_x(x)$ is more notell than $f_x(x)$.

I disagree. Both play a useful role.

Both provide the same information for a continuous RV.

Properties of paf
$$f_{x}(x)$$

1) $f_{x}(x) \ge 0$

2) $P(a \le x \le b) = \int_{a}^{b} f_{x}(x) dx$

3) $F_{x}(x) = \int_{a}^{x} f_{x}(t) dt$

4) $f_{x}(x) dx = 1$

(by letting $x = 0$)

(co in 3)

(warning - for 3) be careful of limit of integral) integration and variable inside integral)

Interpretation of "density" in "pdf"

$$f_{\chi}(x) = \frac{d F_{\chi}(x)}{d \chi}$$

I'density": what is $P(\chi < \chi \leq \chi + h)$?

(the probability of a narrow interval about χ of length h)

$$P(\chi < \chi \leq \chi + h) = F_{\chi}(\chi + h) - F_{\chi}(\chi)$$

$$= F_{\chi}(\chi + h) - F_{\chi}(\chi) \cdot h$$

If $F_{\chi}(\chi)$ has a derivative then as $h > 0$, this probability $\chi f_{\chi}(\chi) \cdot h$

So $f_{\chi}(\chi)$ is Not a probability, but $f_{\chi}(\chi) \cdot h$ is. Intuition: height of pdf at $\chi f_{\chi}(\chi)$

$$f_{\chi}(\chi)$$

indicates like thood of that value happening

xth

Computing probabilities of events from a PDF or CDF. Example: exponential RV. La good model for transmission time, waiting time, service time) Suppose X is the transmission time of messages in a communication system, and $P(\chi > \chi) = e^{-\chi \chi} \qquad \text{for } \chi > 0.$ What are the CDF and PDF of X? What is the probability that X < 1? Answers: CDF $F_{x}(x) = P(X \neq x) = I - P(X > x)$ $= \begin{cases} I - e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$ $F_{x}(I) = \begin{cases} F_{x}(I) & x = 0 \end{cases}$ $f_{x}(x)$ area io $p(x \le 1)$ PDF $f_{x}(x) = \frac{d}{dx} F_{x}(x)$ $= \begin{cases} \lambda e^{-\lambda \gamma} & & & & \\ \lambda e^{-\lambda \gamma} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

method: $P(X \le I) = F_X(I) = I - e^{-\lambda}$ method: $P(X \le I) = F_X(I) = I - e^{-\lambda}$ method: $P(X \le I) = \int_0^1 f_X(x) dx = \int_0^1 \lambda e^{-\lambda x} dx$ $= e^{-\lambda x} \Big|_0^1 = -(e^{-\lambda} - I) = I - e^{-\lambda}$

The properties of a pdf allow us to construct a useful probability model with almost any shape. Exi take a piecewise continuous g(x) 30 4x that satisfies $\int_{\infty}^{\infty} g(x) dx = d$ for some $d < \infty$. Then the function $f_x(x) = \frac{g(x)}{d}$ is a pdf Example: $g(x) = \begin{cases} 1 & 0 \le x \le 1/2 \\ 0 & \text{else} \end{cases}$ Note that $\int_{-\infty}^{\infty} g(x) dx = \int_{0}^{\infty} 1 \cdot dx = \chi \Big|_{0}^{\infty} = \frac{1}{2} = C$ So $f_x(x) = 2g(x) = \begin{cases} 2 & 0 \le x \le \frac{1}{2} \\ 0 & \text{else} \end{cases}$ Note that for this case $f_x(x) > 1$! This is (recall that $f_x(x)$ is not a probability)

Example:
$$f_{\chi}(x) = \begin{cases} c\chi & 0 \le x \le 1 \\ 0 & \text{else} \end{cases}$$

$$1 = \int_{-\infty}^{\infty} f_{\chi}(x) dx = \int_{-\infty}^{\infty} c\chi dx = \frac{c\chi^{2}}{2} \int_{0}^{1} \int_{0}^{\infty} x dx = \frac{c\chi^{2}}{2} \int_{0}^{\infty$$

PDF of showte RVS.

PMF of X: $p_X(x)$ $f_{X(x)} \uparrow d$ $f_{X(x)} \uparrow d$ $f_{X(x)} \uparrow d$

PDF of X: fx (x)

Area of each delta function in $f_{\chi}(\chi)$ corresponds to the probability that $\chi = \chi$.

. A delta function in any PDF corresponds to a jump in the CDF.

Recall: $\int_{-\infty}^{\infty} \delta(x-a) dx = 1$

 $\frac{d}{d\gamma}u(\chi) = S(\chi)$

 $u(x) = \int_{-\infty}^{x} \xi(t) dt$

Sifting $\int_{\text{property}}^{\infty} \int_{\text{res}}^{\infty} \int_{\text{r$

Quicle review: computing probabilities

pdf:
$$P(X \in A) = \int f_X(x) dx$$
 $x \in A$
 cdf
 $P(X \leq a) = F_X(a)$

$$P(a < X \leq b) = F_X(b) - F_X(a)$$

$$P(a \leq X \leq b) = \int_a^b f_X(x) dx$$

$$P(a \le X \le b) = P(a \le X \le b) + P(X = a)$$
This is

zero if X

in a continuono

RV or

if Fx (2) is

continuono at x=a.