Topic 2.2 b
probability density function (chapter 4,2)
(except not ch 4.2.2)

$$
f_{x}(x)=\frac{d}{d x} F_{x}(x)
$$

Book claims $f_{x}(x)$ is more useful than $F_{x}(x)$. I disagree. Both plan a useful sole.
Both provide the same information for a continuors RV.

Properties of pal $f_{x}(x)$
(1) $f_{x}(x) \geqslant 0$
(2) $P(a \leq x \leq b)=\int_{a}^{b} f_{x}(x) d x$

(3) $F_{x}(x)=\int_{-\infty}^{x} f_{x}(t) d t$ \& by Fundamental the of calculus
(4) $\int_{-\infty}^{\infty} f_{x}(x) d x=1 \quad\binom{$ by letting x go to }{00 in (3) }
(Warning - for (3) be careful of limit of integration and variable inside integral)

Interpretation of "density" in "pdf"

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

"density": what io $P(x<X \leqslant x+h)$?
(the probability of a narrow interval about x of length h)

$$
\begin{aligned}
P(x<X \leq x+h) & =F_{x}(x+h)-F_{x}(x) \\
& =\frac{F_{x}(x+h)-F_{x}(x)}{h} \cdot h
\end{aligned}
$$

If $F_{x}(x)$ has a derivative,
then as $h \rightarrow 0$, this poobabinty

$$
\approx f_{x}(x) \cdot h
$$

so $f_{x}(x)$ is NOT a probability, but $f_{x}(x) \cdot h$ is. Intuition: height of pdf at x indicates likeihood of that value happening

Computing probabilities of events from a PDFor CDF.
Example: exponentral RV. (a good model for transmission time, waiting time, service time)
Suppose X is the transmission time of messages in a communication system, and

$$
P(X>x)=e^{-\lambda x} \quad \text { for } \quad x \geqslant 0
$$

What are the CDF and PDF of X ? What is the probability that $X \leq 1$?
Answers:

$$
\text { CDF } \begin{aligned}
F_{x}(x) & =P(X \leq x)=1-P(X>x) \\
& =\left\{\begin{array}{cc}
1-e^{-\lambda x} & x \geqslant 0 \\
0 & x<0
\end{array}\right.
\end{aligned}
$$

PDF $f_{x}(x)=\frac{d}{d x} F_{x}(x)$

$$
=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geqslant 0 \\
0 & x<0
\end{array}\right.
$$

method 1:

$$
P(x \leq 1)=F_{x}(1)=1-e^{-\lambda}
$$

method 2: $P(x \leq 1)=\int_{-\infty}^{1} f_{x}(x) d x=\int_{0}^{1} \lambda e^{-\lambda x} d x$

$$
=\left.e^{-\lambda x}\right|_{0} ^{1}=-\left(e^{-\lambda}-1\right)=1-e^{-\lambda}
$$

The properties of a pdf allow us to construct a useful probability model with dimost any shape.
Ex: take a piecewise continuous $g(x) \geqslant 0 \forall x$ that satisfies $\int_{\infty}^{\infty} g(x) d x=d$
for some $d<\infty$.
Then the function $f_{x}(x)=\frac{g(x)}{d}$ is a pdf
Example: $g(x)=\left\{\begin{array}{lc}1 & 0 \leq x \leq 1 / 2 \\ 0 & \text { else }\end{array}\right.$
Note that $\int_{-\infty}^{\infty} g(x) d x=\int_{0}^{1 / 2} 1 \cdot d x=\left.x\right|_{0} ^{1 / 2}=\frac{1}{2}=c$
so $f_{x}(x)=2 g(x)= \begin{cases}2 & 0 \leq x \leq 1 / 2 \\ 0 & \text { else }\end{cases}$
is a $p d f$.
Note that for this case $f_{x}(x)>1$! This is! (recall that $f_{x}(x)$ is not a probability)

$$
\begin{aligned}
& \text { Example: } f_{x}(x)=\left\{\begin{array}{lll}
c x & 0 \leq x \leq 1 & f_{x}(x) \\
0 & \text { else }
\end{array}\right. \\
& \begin{aligned}
& 1=\int_{-\infty}^{\infty} f_{x}(x) d x=\int_{0}^{1} c x d x=\left.\frac{c x^{2}}{2}\right|_{0} ^{1} \\
&=c / 2=1 \quad \Rightarrow \text { to make } f_{x}(x) \text { a valid } p d f, \\
& \text { set } c=2
\end{aligned}
\end{aligned}
$$

PDF of discrete RVS.

PMF of $x: p_{x}(x)$

PDF of x : $f_{x}(x)$

Area of each delta function in $f_{\lambda}(x)$ corresponds to the probability that $x=x$.

- A delta function in any PDF corresponds to a jump in the CDF.
Recall: $\quad \int_{-\infty}^{\infty} \delta(x-a) d x=1$

$$
\begin{aligned}
& \frac{d}{d y} u(x)=\delta(x) \\
& u(x)=\int_{-\infty}^{x} \delta(t) d t
\end{aligned}
$$

sifting
property $\int_{-\infty}^{\infty} \delta(x-a) g(x) d x=g(a)$

Quiche review: computing probabilities
$p d f: \quad P(X \in A)=\int_{x \in A} f_{x}(x) d x$ cd $\quad P(X \leq a)=F_{X}(a)$

$$
\begin{aligned}
& P(a<x \leq b)=F_{x}(b)-F_{x}(a) \\
& P(a \leq X \leq b)=\int_{a}^{b} f_{x}(x) d x \\
& P(a \leq X \leq b)=P(a<x \leq b)+P(X=a)
\end{aligned}
$$

this is zero if X is a continuous RV or if $F_{x}(x)$ is continuous at $x=a$.

