Cumulative Distribution Function (chapter 4.1) (Topic 2.2a)

Example: 2 fair coin tosses,
$p m f:$

$$
P_{x}(x)= \begin{cases}x=\# \text { heads } \\ 1 / 4 & x=0 \\ 1 / 2 & x=1 \\ 1 / 4 & x=2 \\ 0 & \text { else }\end{cases}
$$

$$
\frac{p_{x}(x)}{1 / 4 \uparrow \sum_{1 / 2}^{1 / 4}} \begin{aligned}
& 012 x
\end{aligned}
$$

what is $P(x \leq 1)$ ?

$$
=\sum_{k=0}^{1} p_{x}(k)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}
$$

In general, how do you compute $P(x \leq x)$

$$
p(x \leq x)=\sum_{k=-\infty}^{x} p_{x}(k)
$$

Note: this is a function of $x$ because its value depends on where we set $x$.
This function $P(X \leq x)$ is so important we give it a name and its own notation.

$$
F_{x}(x)=P(x \leq x) \quad \begin{aligned}
& \text { cumulative } \\
& \begin{array}{l}
\text { distribution } \\
\text { function }
\end{array}
\end{aligned}
$$

三 the probability the RV $x$ takes on a value in the interval $(-\infty, x)$
Note that in general, $P(x<x) \neq P(x \leq x)$

For the 2 fair coin tosses

$$
\quad \text { cdf } F_{x}(x)=P(x \leq x)=\left\{\begin{array}{cc}
0 & x<0 \\
1 / 4 & 0 \leq x<1 \\
3 / 4 & 1 \leq x<2 \\
1 & x \geq 2
\end{array}\right.
$$



We can abd express using the unit step function' Recall $u(x)= \begin{cases}0 & x<0 \\ 1 & x \geqslant 0\end{cases}$

$$
\begin{aligned}
F_{x}(x) & =\frac{1}{4} u(x)+\frac{1}{2} u(x-1)+\frac{1}{4} u(x-2) \\
& =p_{x}(0) u(x)+p_{x}(1) u(x-1)+p_{x}(2) u(x-2)
\end{aligned}
$$

It's very easy to compute this by using the pmf for discrete RVs

Note

$$
P(x \leq 1)=3 / 4 \quad \text { but } \quad P(x<1)=1 / 4
$$

Three types of RVs
Discrete RVs have a discrete sample space.
Then have a $p m f p_{x}(x)=P(x=x)$ which is nonzers only for specific values of $x$.
Continuons RVs have a sample space that is one interval or a union of intervals Mixed RVS are a combination of continuous and discrete

All 3 kinds of RVS have a CDF.
The CDF completely describes any probability of interest for that RV.

Cumulative distribution function (cdf) (chapter 4.1)

$$
F_{X}(x)=P(X \leq x)
$$

Probability density function (pdf)
(Chapter 4, 2)

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

Note: mixed random variables can seem like a mathematical oddity, but then are extremely useful when building complicated probability model of real world events. we cannot just pretend then doit exist.

Continuons example
spin an arrow attached to the center of a circular board. Let $\theta$ be the angle where the arrow stops. $0<\theta \leq 2 \pi$.
Define the probability $\theta$ fall in any subinterval to be proportional to the length of the subinterval. and let $x=\theta / 2 \pi$.

Note $0<X \leq 1$
What is $F_{X}(x)$, the cdt of $X$ Recall-find $F_{X}(x)$ focal $x$ !
Case 1: $x<0$ : $F_{x}(x)=P(x \leqslant x)=P(\phi)=0$
Case 2: $\quad x>1$ : $F_{x}(x)=p(x \leqslant x)=p(s)=1$
Case 3: $0<x \leqslant 1$ : $F_{x}(x)=P(x \leqslant x)$

$$
=P(\theta \leq 2 \pi x)=\frac{2 \pi x}{2 \pi}=x
$$


$f_{x}(x)$
Note: this is an
 example of a uniform random variable

A mixed RV example $X=$ wait time for a taxi
(a) if a taxi is available when you get to the taxi stand, the wait time $X=0$
This happens with probability $P$.
(b) if no taxi is there, then wait time is uniformly distributed between $[0,1]$ hours What is $F_{X}(x)$, the cat of $X$

$$
\begin{aligned}
F_{x}(x)=P(x \leq x) & =P(X \leq x) \text { taxi there }) P(\text { taxi there }) \\
& +P(x \leq x \mid \text { no taxi }) P(\text { notaxi })
\end{aligned}
$$

by the theorem of total probability:
The problem statement defines the conditional probs.

$$
\begin{aligned}
& P(X \leq x \mid \text { taxi there })= \begin{cases}1 & x \geq 0 \\
0 & \text { else }\end{cases} \\
& P(X \leq x \mid \text { no taxi })=\left\{\begin{array}{cc}
0 & x<0 \\
x & 0 \leq x<1 \\
1 & x \geq 1
\end{array}\right. \\
& (\text { a uniform RV })
\end{aligned}
$$



Summary: 3 types of random variables
Discrete:

$$
F_{x}(x)=\sum_{x_{k} \leq x} p_{x}\left(x_{k}\right) u\left(x-x_{k}\right)
$$

a stair case that increases to the right
Continuous:

$$
F_{x}(x)=\int_{-\infty}^{x} f_{x}(t) d t
$$

Every possible outcome hess a probability zew, but probabilities of intervals are well-defined. Calculate probabilities as integrals of the probability density of intervals.
Mixed -type CDF jumps at a countable points but also increases continuously in at least me interval


$$
\begin{gathered}
F_{x}(x)=p F_{1}(x)+(1-p) F_{2}(x) \\
\text { for } 0<p<1
\end{gathered}
$$

where $F_{1}(x)$ is the cdf of a docile RV and $F_{2}(x)$ is a cdf of a continuous RV

Properties of CDFs $F_{X}(x)=P(X \leq x)$
These all arise from the axions of probability

1) $0 \leq F_{x}(x) \leq 1$ (it's a probability)
2) $\lim _{x \rightarrow \infty} F_{x}(x)=1 \quad(\infty, x \rightarrow \infty,\{x \leq x\}=S)$
3) $\lim _{x \rightarrow-\infty} F_{x}(x)=0 \quad($ as $x \rightarrow-\infty,\{x \leq x\}=\phi)$
4) $F_{x}(x)$ is non decreasing

$$
F_{X}(a) \leq F_{x}(b) \text { if } a<b
$$

$\left(\begin{array}{ccc}\text { as } x & \text { increases, the } \\ \text { set }\{x \leq x\} & \text { cannot } \\ & \text { get smaller }\end{array}\right)$


5) $F_{x}(x)$ is continues from the right

$$
F_{x}(b)=\lim _{h \rightarrow 0^{+}} F_{x}(b+h)=F_{x}\left(b^{+}\right) \text {for } h>0
$$



Computing probabilities
6) $p(a<X \leq b)=F_{x}(b)-F_{x}(a)$

7)

$$
\begin{aligned}
P(X=b) & =F_{x}(b)-F_{x}\left(b^{-}\right) \\
= & F_{x}(b)-\lim _{\substack{ \\
h \rightarrow 0 \\
h>0}} F_{x}(b-h) \\
& \left(\begin{array}{l}
\text { the value at the } \\
\text { open circle i } \\
\lim _{h \rightarrow 0} F_{x}(b-h)
\end{array}\right)
\end{aligned}
$$

8) 

$$
\begin{aligned}
P(x>x) & =1-F_{x}(x) \\
& =P\left(\{x \leq x\}^{c}\right)=1-P(x \leq x)
\end{aligned}
$$

Be careful of strict $(<)$ and loose ( $\leq$ ). inequalities. IT mATTERS!

