

Some Events of Interest using KVS

$$\{ \chi(w) = \chi \}$$
, $\{ a \leq \chi(w) \leq b \}$
we still have our previous function
 $P: A \rightarrow Eo, 13$ (probability mapping)
 $P(\{ \chi(w) = \chi \}) = P(\chi = \chi)$
 $P(\{ x \in \chi(w) \leq b \}) = P(a \leq \chi \leq b)$
 $P(\{ a \leq \chi(w) \leq b \}) = P(a \leq \chi \leq b)$
 $P(a \leq \chi(w) \leq b \}) = P(a \leq \chi \leq b)$
 $P(a \leq \chi(w) \leq b \} = P(a \leq \chi \leq b)$

w, out comes	p({w}}) P(outione)	X(w)	Υ(ω)
WW WLW	р(1-р) р ³	2 2	2 3
WLL	p.p.(1-p)	l	3
LWW LWL	(l-p)(l-p) p (l-p)(l-p)(l-p)	2	3
LL	(1-p)p	0	2

Can condense the table for both X(w) and Y(w)
To do this, collect all possible outcomes
$$\{w: X = x\}$$

and add their probabilities to get $p_{X}(x)$
(Remember, the outcomes form disjoint sets)

Discrete or continuous?

- If discrete, the range of X contains a countable (possibly infinite) number of elements $\{\chi_{1}, \chi_{2}, \dots, \}$
- Discrete RVs have a probability mass function (pmf) px(x)
- Continuous RVs can take on any real number y on an interval, ex: $a \le y \le b$
- All RVs have a probability density function (pdf) fx1x) - see chapter 4.2
- All RVS have a cumulative distribution function (cdf) Fx1x) -see Chapter 4,1

Well start with discrete RVs

Probability mass function (pmf)

$$p_X(x) = 4$$
 probability of event $\{X(w) = x\}$
• lower case p , subscript capital X to
denote which RV this is a pmf of,
argument lower case x for the value
pmf is only defined for discrete RVs.
 $p_X(x) = P(X = x) = P(\{W \in S: X(w) = x\})$
for $x \in IR$
Calculating a pmf:
-For each value x that X can take,
collect all possible outcomes $\{w: X(w) = x\}$
and add their probabilities to get $p_X(x)$
Can denote a pmf by
a) a table
b) a graph
c) a formula

From the 3-game series example

$$p_{(1-p)} (p^{2}+(1-p)^{2})$$

$$p_{(2-3p-2p^{2})} 2p(1-p) (-2p(1-p))$$

$$p_{(2-3p-2p^{2})} 2p(1-p) (-2p(1-p))$$

$$p_{(2-3p-2p^{2})} (p_{(1-p)}) (p^{2}+(1-p)^{2}) (p_{(2-2p+2p^{2})}) (p_{(2-2p+2p^{2}$$

Another example
Roll a pair of fair dive and observe maximum

$$S = \{(i,j): | \leq i \leq 6 \text{ and } | \leq j \leq 6 \}$$
 $(i,j \in \mathbb{Z})$
 $Y(w) = Y((i,j)) = \max\{i,j\}$
what the pmf of Y?
 $Sy = \{1,2,3,4,5,6\}$

Enumerate sets:
Set
$$\{ Y = 1 \} = \{ (1,1) \}$$

Set $\{ Y = 2 \} = \{ (1,2), (2,1), (2,2) \}$
etc.

$$\frac{y(1)(y)}{y(y)} = P(Y=y)$$

$$\frac{y'(y)}{y'(y)} = \frac{y'(y)}{y'(y)}$$

Basic properties of a pmf
$$p_{X|X}$$

() $p_{X|X} \ge 0$ for all χ (recall: $p_{X|X} \ge 0$
 $a \text{ probability}$)
(2) $\sum_{x \in S_X} p_X(x) = 1$ (because all the sets
 $x \in S_X$ ($x = x^2$ together
form a partition of S)
(3) $P(X \text{ is in event B})$ (because of
 $= \sum_{x \in B} p_X(x)$ (Axiom II)

Summary and preview - We define a RV as a function of outcomes - P(.) is still a mapping from events to E0,1] - There are 3 ways we can get a RV . The RV is the observation (ex: photon count) . The RV is a function of the outcome (# working . The RV is a function of the outcome (# working . The RV is a function of another RV (power from voltage, or revenue from working circuits) - We can condition a RV on an event or a RV - We will explore independence of an RV from an event or another RV