Sequential Experiments
(Chapter 2.6)
(Sections 2.6.1 and
Many experiments are actually a $2.6 .5 \mathrm{mly})$
sequence of subexperimento.
These may be dependent or independent subexperimento.

Dependent: The procedme of a subexperiment depends on the previous outcome (s).
Example: roll a die, then flip that many coins and count the number of heads
Example: flip a coin until you get one heal.
independent : The procedme of each subexperiment does not depend on any previons outcome.
Example: flip a coin 100 times, count $\#$ heads Example: roll 5 dice and sum the dots shown

A tree diagram is an effective solution method

Example of sequential dependent experiments
The "game of three" uses a deckle of 3 cards:
Ace, 2, 3. The Ace is worth 1 point.
Draw cards (without replacement) until your total is 3 or more. You win if you get 3 exact y, What is the probability you win?
Answer: $\omega=\{\omega$ in $\}$, want $P(\omega)$.
Let $C_{i}=\left\{\operatorname{card} C\right.$ is i^{+h} card drawn $\}$
Example: 3_{2} is the event the 3 is drawn 2 nd.

(no more branches, experiment stops)

$$
\begin{aligned}
w & =\left(A_{1} \cap Z_{2}\right) \cup\left(2_{1} \cap A_{2}\right) \cup 3_{1} \\
P(w) & =P\left(A_{1} \cap Z_{2}\right)+P\left(2_{1} \cap A_{2}\right)+P\left(3_{1}\right) \\
& =\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

Example of sequential dependent experiments Engineers coordinating 2 traffic lights to make the probability some one gets the same color light at the second light that they got at the first light io 0.8
$R_{1}=\{$ first light red $\} \quad G_{1}=R_{1}^{2} \quad$ (no yellow
$R_{2}=\{$ second light red $\} \quad G_{2}=R_{2}{ }^{c}$ lights)

Given?

$$
\begin{array}{ll}
P\left(R_{2} \mid R_{1}\right)=0.8 & P\left(G_{2} \mid R_{1}\right)=0.2 \\
P\left(G_{2} \mid G_{1}\right)=0.8 & P\left(R_{2} \mid G_{1}\right)=0.2
\end{array}
$$

Question: a) Assume $1^{\text {st }}$ light equally likely to be red or green. What b the probability the second light is green?
Answer
Given $P\left(R_{1}\right)=P\left(G_{1}\right)=1 / 2$
want $P\left(G_{2}\right)=P\left(G_{2} \mid R_{1}\right) P\left(R_{1}\right)+P\left(G_{2} \mid G_{1}\right) P\left(G_{1}\right)$
by the rem of total probability, since R_{1} and G, form partition

$$
P\left(G_{2}\right)=(0.2)(0.5)+(0.8)(0.5)=0.5
$$

b) What's the probability a driver has to wait for at least one light?
Answer

$$
\begin{aligned}
& =1-P(\text { no waiting })=1-P\left(G_{1} \cap G_{2}\right) \\
& =1-P\left(G_{2} \mid G_{1}\right) P\left(G_{1}\right)=1-(0.8)(0.5)=0.6
\end{aligned}
$$

c) Given that the driver has to wait at the second light, what's the probability the first light was green?
Answer

$$
\text { want } P\left(G_{1} \mid R_{2}\right)=\frac{P\left(R_{2} \mid G_{1}\right) P\left(G_{1}\right)}{P\left(R_{2}\right)}
$$

$$
=\frac{(0.2)(0.5)}{1-P\left(G_{2}\right)}=0.2
$$

with a tree diagram

a)

$$
\begin{aligned}
P\left(G_{2}\right) & =P\left(R_{1} \cap G_{2}\right)+P\left(R_{2} \cap G_{2}\right) \quad G_{1} \cap G_{2} \quad P\left(G_{1} \cap G_{2}\right)=0.4 \\
& =0.4+0.1=1 / 2
\end{aligned}
$$

etc.

Example of sequential dependent experiments monty Hall problem. "Let's make a deal" There are 3 doors. Behind me of the doors is a car. Behind each of the other two is agoat,

Step li pick a door
Step 2: Host opens one of the other doors and shows you a goat.
Now 2 doors ane closed and one is open. Behind re closed door is a goat, behind the other is a car.
Step 3: Host asks if you want to switch doors, orstan with the door you first picked.

Question: Should you switch? Does if matter?
Assumption: a) the car is not moved
b) the host knows where the car is and will never open that door in step 2.

Incorrect intuition: There are 2 doors lett and one car, so each dow has $a / 2$ chance of hiding the car. So there's not need to switch. This is incorrect!

Analyze Monty Hall as a sequential experiment.
Let $D_{i}=\{$ car is behind Door $i\} \quad i=1,2,3$
$E_{j}=\{$ host Exposes door $j\} \quad j=1,2,3$
we know $D_{k} \cap E_{k}=\phi$ for any k.
without loss of generality, we can assume you always choose Door 1 .
so $j=2,3$
and never $j=1$.

4 possible outcomes, but not all one equally likely.

$$
\begin{aligned}
& P\left(D_{1}\right)=P\left(D_{1} \cap E_{2}\right)+P\left(D_{1} \cap E_{3}\right)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \\
& P\left(D_{1}^{c}\right)=P\left(D_{2} \cap E_{3}\right)+P\left(D_{3} \cap E_{2}\right)=\frac{1}{3}-\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

\Rightarrow SwITCH for a higher chance of winning car

