Theorem of total probability,
Let $B_{1}, B_{2}, \ldots, B_{n}$ form a partition of S (i.e., they are mutually exclusive and collectively exhaustive)

We can decompose any event A into a collection of mutually exclusive events:

$$
\left(A \cap B_{1}\right),\left(A \cap B_{2}\right), \cdots,\left(A \cap B_{n}\right)
$$

Because $A=A \cap S=A\left(B_{1} \cup B_{2} \cup \ldots \cup B_{n}\right)$

$$
=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \ldots \cup\left(A \cap B_{n}\right)
$$

Since they've disjoint, we can compute

$$
P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)
$$

Applying the definition of conditional probability,

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

These are both the theorem of total probability

The theorem of total probability (pictorially)
B_{i}^{\prime} 's form a partition

$A \cap B_{2}$
$P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$

Example: Thenem of total probability
A company has 3 machines that make $1 k \Omega$ resistors. Events B_{1}, B_{2}, B_{3} repusent those resistors made by machines $1,2,3$ uspectively. 80% of resistors from B_{1} are within 50Ω of

90%	$"$	B_{2}
60%	$"$	B_{3}

and machine B_{1} makes 3000 resistors per hour

B_{2}	$"$	4000	$"$
B_{3}	$"$	3000	$"$

All resistors are mixed together and a resistor is chosen at random. what is the probability that a given resistor is within 50Ω of the desired value?

Answer start by defining events
Let $A=\{$ resistor is within 50Ω of desired $\}$ Then translate the words into math:

$$
P\left(A \mid B_{1}\right)=0.8 \quad P\left(A \mid B_{2}\right)=0.9 \quad P\left(A \mid B_{3}\right)=0.6
$$

The total \#resistors produced in an hour $=10,000$.
So $P\left(B_{1}\right)=0.3 \quad P\left(B_{2}\right)=0.4 \quad P\left(B_{3}\right)=0.3$

Then apply the theorem of total probability

$$
\begin{aligned}
P(A) & =P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+P\left(A \mid B_{3}\right) P\left(B_{3}\right) \\
& =(0.8)(0.3)+(0.9)(0.4)+(0.6)(0.3) \\
& =0.78
\end{aligned}
$$

For these 3 machines, overall 78% of resistors are within 5% of the desired value

An approach using a tree diagram

$$
P(A)=0.24+0.36+0.18=0.78
$$

The tree diagram, explained

- The root of the tree (top or left)
is the entire sample space
- Each node is an event
- Each set of branches partition the event at the previous node into disjoint sets
- Label each branch with a conditional probability. The conditioning event is the event at the previous node.
(Note: $P(A)=P(A \mid S)$)
- Leaf nodes (at the bottom or right) are events of

$$
\left(\text { example: } A \cap B_{1}\right)
$$ interest

- To get the probability of an event corresponding to a leaf node, follow the path from the leaf node to the root, multiplying probabilities

Probabilities leaving each node sum to l.

At each level of the tree, the probabilities of all events sum to 1

One example of the power of probability models defined by conditional probability:

Return to the example of 3 machines making resistors.
We know that $P\left(A \mid B_{1}\right)=0.8, P\left(A \mid B_{2}\right)=0.9$,
and $P\left(A \mid B_{3}\right)=0.6$.
originally, $P\left(B_{1}\right)=0.3 \quad P\left(B_{2}\right)=0.4, P\left(B_{3}\right)=0.3$.
Now suppose machine 3 breaks completely and stops making any resistor.
In this new scenario, $P\left(B_{1}\right)=3 / 7, P\left(B_{2}\right)=4 / 7$. What is the probability of event A now?

Answer:

$$
\begin{aligned}
P(A) & =P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right) \\
& =\frac{1}{7}((0.8)(3)+(0.9) 4) \\
& =\frac{24+3.6}{7}=\frac{6}{7}
\end{aligned}
$$

Because machines 1 and 2 didn't change!

Example: Suppose 2 horses race against each other regularly, and it's observed that in rain, horse 1 wins 20\% of the time, but in dry weather, horse 1 only wins 20% of the time.
a) The two horses are scheduled to race a week from now, and the fore cast is 50% chance of rain. What b the probability horse I will win?
Answer: Let $H=\{$ horse 1 wins $\} \quad R=\{$ rain $\}$ we know

$$
\begin{aligned}
& P(H \mid R)=0.7 \\
& P\left(H \mid R^{c}\right)=0.2
\end{aligned} \Rightarrow \quad P\left(H^{c} \mid R\right)=0.3
$$

By the theorem of total probability,

$$
\begin{aligned}
P(H) & =P(H \mid R) P(R)+P\left(H \mid R^{c}\right) P\left(R^{c}\right) \\
& =\frac{1}{2}(0.7+0.2)=\frac{9}{20}=\frac{45}{100}
\end{aligned}
$$

b) The morning of the race, the forecast predict 80% chance of rain. What b the revised probability horse 1 will win?
Answer: now $P(R)=0.8$ and $P\left(R^{c}\right)=0.2$

$$
P(H)=(0.7)(0.8)+(0.2)(0.2)=0.60
$$

Interputation: Using conditional probabitities to define models can be very powerful

Bayes Rule
Recall the definition of conditional probability:
(Thomas Bayes was a minister, 1702-1761.
He never 'published his work.)

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B)>0
$$

Multiplying both sides bn $P(B)$, we have

$$
P(A \mid B) P(B)=P(A \cap B)=P(B \mid A) P(A)
$$

so

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)} \quad \begin{aligned}
& \text { when } P(A) \neq 0 \\
& \text { and } P(B) \neq 0
\end{aligned}
$$

This abs extends to a partition of n sets:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{k=1}^{n} P\left(A \mid B_{k}\right) P\left(B_{k}\right)}
$$

C note that in the denominator, we applied the therm of total probability)

We will use versions of Bayes Rule throughout the course to learn from observing the outcome of an experiment.
Use Bayes Rule when yon want to "flip" the conditioning, for example when the model describes $P(A \mid B)$ but you want to find $P(B \mid A)$
$P\left(B_{i}\right)$ are prior probabilities
(a prior) (before the experiment)
$P\left(B_{i} \mid A\right)$ are the posterior probabilities (a posterior) (after observing the ont come that the event A occured during the experiment

A classic example where intuition often fails us
You have been tested for cancer, and yon received a positive test result. However, only 0.5% of the population' has this particular cancer.
The test is 98% accurate.
What are the chances you have cancer?
To define events, step back and consider the
situation that existed before the experiment.
The experiment was to take the cancer test.
There were 2 uncertainties
a) you may or man not have cancer \Rightarrow event C
b) you man os man not receive a positive result

$$
C=\{\text { cancer }\} \quad P=\{\text { positive result }\}
$$

want $P(c \mid P)$ (since yon did get a positive
Accuracy $98 \% \Rightarrow P\left(P \mid c^{c}\right)=0.02$
and $p\left(p^{c} \mid c\right)=0.02$
Also, $P(c)=0,005$ from the problem statement

$$
\begin{aligned}
P(c \mid P) & =\frac{P(P \mid c) P(c)}{P(P)}=\frac{P(P \mid c) P(c)}{P(P \mid c) P(c)+P\left(P \mid c^{c}\right) P\left(c^{c}\right)} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.02)(0.995)} \approx 0.198
\end{aligned}
$$

About 20% chance yon have cancer despite a positive test!

Comments on the conclusions drawn by Bayes Rule.
A lot depends on the prior probability, in this case, $P(c)$

$$
P(c \mid P)=\frac{P(P \mid c) P(c)}{P(P)}=\frac{P(P \mid c) P(c)}{\left.P(P \mid c) P(c)+P(P) c^{c}\right) P\left(c^{c}\right)}
$$

example 98% test accuracy

prior	
probability	posterior
probability	

probability probability

$P(c)$	$P(c \mid P)$
0.005	0.198
0.05	0.72
0.5	0.98

- The doctor might have had a hunch that you had cancer before ordering the test. So the P(C) might have been higher.
- Even if $P(c)$ is small, and say $P(c \mid P) \approx 0,2$, we can increase our belief about the event C by doing a second test..

Example: Binary communication's channel send receive

Let $S_{i}=\{$ Send $i\}$ and $R_{i}=\{$ receive $i\}$
In a real system, we could measme the probability of receiving a one when we send a zero, and that of receiving a zero when we send a one.
Suppose when we send a zero, it is correctly received 95% of the time, and when we send a zen it's correctly received 90% of the tinier.
Then $P\left(R_{0} \mid S_{0}\right)=0.95$ and $P\left(R_{1} \mid S_{1}\right)=0.1$
so $P\left(R_{1} \mid S_{0}\right)=0.05$ and $P\left(R_{0} \mid S_{1}\right)=0.9$

The prior probabilities $P\left(S_{0}\right)$ and $P\left(S_{1}\right)$ will affect the over all probability of error in the case,

$$
\begin{aligned}
P(\text { error }) & =P\left(\text { error } \mid S_{0}\right) P\left(S_{0}\right)+P\left(\text { error } \mid S_{1}\right) P\left(S_{1}\right) \\
& =P\left(R_{1} \mid S_{0}\right) P\left(S_{0}\right)+P\left(R_{0} \mid S_{1}\right) P\left(S_{1}\right) \\
& =P\left(R_{1} \mid S_{0}\right) P\left(S_{0}\right)+P\left(R_{0} \mid S_{1}\right)\left[1-P\left(S_{0}\right)\right]
\end{aligned}
$$

Another quantity of potential interest:
what the probability that if you received a one $\left(R_{1}\right)$ that a one was actually sent?
Banes Rule: $P\left(S_{1} \mid R_{1}\right)=\frac{P\left(R_{1} \mid S_{1}\right) P\left(S_{1}\right)}{P\left(R_{1}\right)}$ if $P\left(R_{1}\right) \neq 0$
So we need to find $P\left(R_{1}\right)$ using the theorem of total probability

$$
P\left(R_{1}\right)=P\left(R_{1} \mid S_{0}\right) P\left(S_{0}\right)+P\left(R_{1} \mid S_{1}\right) P\left(S_{1}\right)
$$

Suppose $P\left(S_{0}\right)=P\left(S_{1}\right)=1 / 2$

$$
P\left(R_{1}\right)=(0.05) 1 / 2+(0.90) 1 / 2=0.475
$$

And substituting this into Bayes Rule,

$$
P\left(S_{1} \mid R_{1}\right)=\frac{(0.9) 1 / 2}{0.475}=\frac{90}{95}
$$

Also, $P\left(S_{0} \mid R_{1}\right)=5 / 95$
\Rightarrow a sensible result, more likely to have sent a one if we receive a one
BUT suppose the prior probabilities were different.

$$
P\left(S_{0}\right)=0.99 \text { and } P\left(S_{1}\right)=0.01
$$

Using the same equation,

$$
\begin{aligned}
& P\left(R_{1}\right)=0.0585 \\
& P\left(S_{1} \mid R_{1}\right)=0.154
\end{aligned}
$$

Even if we receive a one, it's more likely that a zero was sent!!

