Conditional Probability (Chapter 2.4)
Two useful applications of conditional probability
(1) Build complex probability models from simpler pieces
(3) Learn from the result of the experiment

The math: Three basic equation's
Definition $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ if $P(B)>0$
Theorem of $P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$
Total probability
if the
if the $B_{i}^{-1} s$
form partition
Bayes Rule $P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}$ if $P(A)>0$
You are expected to memorize these and know how to apply them

An example that leads into conditional probability
Mixed electronic components in a store. Cannot buy soparately, must buy in bulk.
$29 \%$ bad parts
$3 \%$ bad resistors
$12 \%$ good resistors
$5 \%$ bad capacitors $32 \%$ diodes
(1) Define observation: each part has a type and a good/bad.
(2) Define partitions: ( $R, C, D$ where $R=\{$ resistors $\}, C=\{$ capacitors $\}, D=\{$ diodes $\}$
(b) $B, B^{c}$ where $B=\{\operatorname{bad}\}, B^{c}=\{\operatorname{good}\}$.
(3) build probability table and complete it

0.29
$B$
$B^{c}$

|  | $C$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
|  | 0.03 | 0.05 | 0.21 |
|  | 0.12 | 0.48 | 0.11 |
|  | 0.15 | 0.53 | 0.32 |

Answer questions:
Q1) Whats the probability a random component is a resistor?

$$
\begin{aligned}
P(R) & =P(R \cap B)+P\left(R \cap B^{C}\right) \\
& =0.12+0.03=0.15
\end{aligned}
$$

Q2) Suppose yon have no use for either bad parts or resistor.
whats the probability a random part is useful to yon?

$$
\text { Event "useful" }=(B \cup R)^{c}
$$

(because event "not useful" is $B \cup R$ )

$$
\begin{aligned}
& P\left((B \cup R)^{C}\right)=1-P(B \cup R) \\
& =1-[P(B)+P(R)-P(B \cap R)] \\
& =1-[0.29+0.15-0.03]=1-.41=0.59
\end{aligned}
$$

Q3) What o the probability of a bad diode? want $P(B \cap D)$.
From Thy total prob, $P(B)=P(B \cap R)+P(B \cap C)+P(B \cap O)$ or $0.29=0.03+0.05+P(B \cap D) \Rightarrow P(B \cup D)=0.21$

These questions have all been review questions

Q4) Supple yon pull out a resistor. what' the probability it's bad?
The 1 Et experiment (for Q1-Q3) implicitly looked at two things simultanernoly:
part type and part good/bad
with this question', we already know the part is a resistor - so it's a different experiment.
We can use our probability model for the Inst experiment to crate one for the and experiment

Restrict the sample space of the 1 ${ }^{\text {t }}$ experiment to get a new sample space where we know that we have a resister.

Now only 2 outcomes can happen:
A good part (that a resistor) and
a bad part (thetis a resistor)
In this new experiment, the sum of the probabilities of these outcomes must be 1 .
list experiment

and experiment


We denote the probability a part is bad given that it is a resistor as

$$
P(B \mid R) .
$$

And we compute it by rescaling the probabilities:

$$
\begin{aligned}
& P(B \mid R)=\frac{P(B \cap R)}{P(R)}=\frac{0.03}{0.15}=\frac{1}{5} \\
& P\left(B^{c} \mid R\right)=\frac{P\left(B^{c} \cap R\right)}{P(R)}=\frac{0.12}{0.15}=\frac{4}{5}
\end{aligned}
$$

Two steps: (1) narrow the sample space
(2) rescale so all probabilities in new sample space sum to 1

Q5) Suppose the components are sorted into Good and Bad, and yon pull a component at random from the Good pile.
Whats the probability a random Good component is a capacitor?

$$
P(C \mid G)=\frac{P(C \cap G)}{P(G)}=\frac{0.48}{0.21}
$$

This leads us to the formal definition of conditional probability.

Suppose 2 events, $A$ and $B$, are defined on the same sample space.
Then $P(A \mid B)$ is the conditional probability of event $A$ conditioned on (or given) event B,

$$
\text { and } P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B) \neq 0
$$

As stated above, there are two useful things we can accomplish with conditional probability:
(1) build more complicated (and accurate) model by combining simpler model (using the Theorem of Total probability)
(2) learn by observing the outcome of an experiment (using Bayes Rule)

## English and Conditional probability

Fall 2016
(September 6, 2016)
Conditional, or joint probability??

- Suppose you pull out a part, what's the probability it's a bad resistor?
- Suppose you pull out a part, what's the probability it's bad and a resistor?
- Suppose you pull out a resistor, what's the probability that it's bad?
- What's the probability that the part is bad, given that it's a resistor?
- What's the probability you pull out a bad resistor?
- What's the probability a resistor is bad?
- What's the probability a bad part is a resistor?
- What's the probability a part is a bad resistor?

English and Conditional probability
Fall 2016
(September 6, 2016)
Conditional, or joint probability??
$B \cap R \cdot$ Suppose you pull out a part, what's the probability it's a bad resistor?
$B \mid R \cdot$ Suppose you pull out a resistor, what's the probability that it's bad? conditional
$B \mid R \cdot$ What's the probability that the part is bad, given that it's a resistor? con ditional $B \cap R \cdot$ What's the probability you pull out a bad resistor? joint
$B \mid R \cdot$ What's the probability a resistor is bad?
conditional
RIB•What's the probability a bad part is a resistor? conditional
$B \cap R \cdot$ What's the probability a part is a bad resistor? joint

An example of conditional probability
with a continuous sample space
Throw a dart at a dart board.
Assume the probability it misses the board is zero Assume equally likely to hit anywhere on the board. Suppose dart board has radius 3.


$$
\begin{aligned}
& S=\left\{\begin{array}{l}
\text { location } \\
\text { hits on dart board }
\end{array}\right\} \\
& B=\left\{\begin{array}{l}
\text { dart hits inside } \\
\text { circle } w / \text { radius } 2
\end{array}\right\} \\
& A=\left\{\begin{array}{c}
\text { dart hits inside } \\
\text { circle w/radius }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
P(A) & =\frac{\operatorname{area}(A)}{\operatorname{area}(S)} \text { because all points in } \\
& =\frac{\pi}{9 \pi}=\frac{1}{9} \\
P(B)= & \frac{\operatorname{area}(B)}{\operatorname{area}(S)}=\frac{4 \pi}{9 \pi}=\frac{4}{9}
\end{aligned}
$$

$$
P(A \cap B)=P(A)=1 / 9
$$

$$
P(A \mid B)=\frac{\operatorname{area}(A)}{\operatorname{area}(B)}
$$

using the intuition that we can ignore the parts of the board that are not in B

$$
=\frac{\pi}{4 \pi}=1 / 4
$$

Or using definition of conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 9}{4 / 9}=1 / 4
$$

Conditional probability satisfies the 3 axioms.

| probability | conditional probability |
| :--- | :--- |
| I $\quad P(S)=1$ | $P(B \mid B)=1$ |
| II $\quad P(A) \geqslant 0$ | $P(A \mid B) \geqslant 0$ |

III if $A_{1} \cap A_{2}=\phi$ and $A=A_{1} \cup A_{2}$,
then $P(A)$ $(A)$
$=P\left(A_{1}\right)+P\left(A_{2}\right)$ then $P(A \mid B)=P\left(A_{1} \mid B\right)$
$+P\left(A_{2} \mid\right.$
if $A_{1} \cap A_{2}=\phi$, and

$$
A=A_{1} \cup A_{2}
$$

$$
\begin{aligned}
& P(B \mid B)=1 \\
& P(A \mid B) \geqslant 0
\end{aligned}
$$

$$
+P\left(A_{2} \mid B\right)
$$

