D and I inclusive

Several interpretations of probability

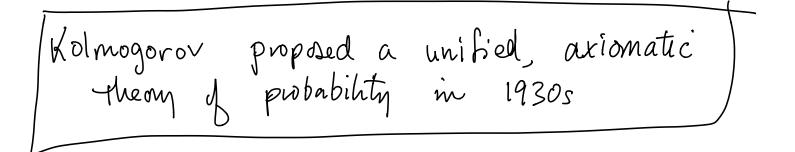
· relative frequency, based on repeated experimental trials

r_A = ^{NA}/N = rclatrie frequency of event A

and as Ngets large,

 $P(A) \approx r_A$

But! not all experiments are repeatable!



Axioms of probability (Section 2.2)
An axiom is a statement or proposition that is
regarded as accepted, or self-evidently true
Axiom I:
$$P(A) \ge 0$$

Axiom II: $P(A) \ge 0$
Axiom II: $P(S) = 1$
Axiom III: If $A \cap B = \emptyset$ (A and B are disjoint)
then $P(A \cup B) = P(A) + P(B)$
These are the basics. Everything else can be
derived from these.
Axiom III': if A_{i}, A_{22} ... is an infinite
sequence of events such that
 A_i and A_j are disjoint for all $i \ne j$ ($A: \cap A_j = \emptyset$)
then
 $P\left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{n} P(A_i)$
We will built useful fasts about probability

e will build useful facts about probability from these axions Corollaries to the axioms

Corollary 1:
$$P(A^{c}) = I - P(A)$$

why? recall $S = A \cup A^{c}$ and $A \cap A^{c} = \phi$
so $P(A \cup A^{c}) = P(S) = I$ (by Axiom II)
 $= P(A) + P(A^{c})$ (by Axiom III)
so $P(A^{c}) = I - P(A)$
Corollary 2: $P(A) \leq I$
why? $P(A) \geq 0$ and $P(A^{c}) \geq 0$
and $P(A^{c}) = I - P(A) \geq 0 = P(A) \leq I$

Corollary 3:
$$P(\phi) = 0$$

why? $\phi = s^{c}$
 $P(\phi) = P(s^{c}) = 1 - P(s) = 1 - 1 = 0$

Corollary 4: Suppose we have an event
$$A$$

that is a bit complicated. We can break
 A into disjoint components : $A_1, A_2, ..., A_n$.
Such that $A = \bigcup_{i=1}^{n} A_i$
Then $P(A) = \sum_{i=1}^{n} P(A_i)$

Corollary S:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
Note: Axiom III can only be used when
A and B are dibjoint. This can be used
for any A and B.
Why? we'll use a standard approach:
manipulate the set inside $P(\cdot)$
to call it something else, without
changing its contents
A AAAB AAAB AUB = (A \cap B) U (A \cap B^{c})
 $U(A^{c} \cap B)$
AFOR ACOB ALL 3 pieces are disjoint
Apply axiom III
 $P(A \cup B) = P(A \cap B) + P(A \cap B^{c}) + P(A^{c} \cap B)$
and $P(A) = P(A \cap B) + P(A \cap B^{c}) + P(A^{c} \cap B)$
 $Combining P(A \cup B) = P(A) + P(B) - P(A \cap B)$
We will use this corollary extensively!

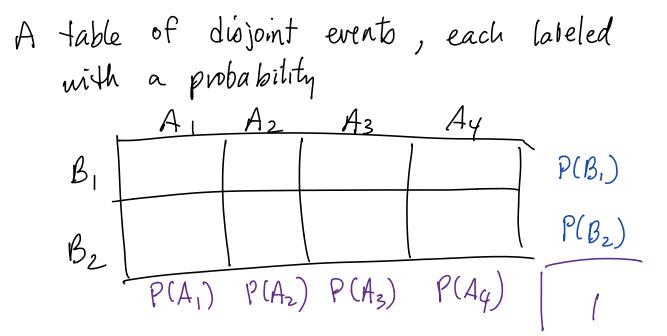
Corollary 6: extends this to more than
2 events
ex:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

 $- P(A \cap B) - P(A \cap C) - P(B \cap C)$
 $+ P(A \cap B \cap C)$
(add all individual, subtract all pairwise,
add all three way, subtract all 4 way,
 etc)
Cordbary $P(A) = P(B)$
(basically, can write $B = A + C$ where
 $C = B - A$ so $A \cap C = q$. $P(C) \ge 0$, so $P(A) \le P(B)$ /
This can be meeful if events qet complicated.
We may not know all events in A but we
could find a simpler set B that contains A .
Anion Bound : $P(A \cup B) \le P(A) + P(B)$
This can be vached when we doit know how
to characterize $A \cap B$, or if $P(A)$ and $P(B)$
are both small (i.e., A and B are both rare)

Suppose the collection of sets
$$A_{1,1}, A_{2,...,A_n}$$

partition the sample space.
Then $P(s) = 1 = P(A_1 \cup A_2 \cup ..., A_n)$
 $= P(A_1) + P(A_2) + ... P(A_n)$
 $I = \sum_{i=1}^{n} P(A_i)$



The A's form a partition The B's form another partition The sum of the probabilities across rows are P(Bi) The sum of the probabilities down the columns are P(A;)

Together, since the A's form a partition, the sum along the bottom is 1 and since the B's form a partition, the sum down the right column is also 1 Note that together, the events associated with each block also form a partition

Exercise 3.

Chips are produced by two machines, and each chip has a probability of being bad. The probability a chip is made from machine 1 is 0.4, and the probability that a chip is good is 0.7. Also, suppose we know that the probability of a chip being either bad or made from machine 1 is 0.7.

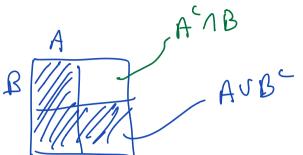
- (a) What is the probability a chip is made from machine 2.
- (b) What is the probability a chip is made from machine 1 and is bad?

We can turn this word problem into math. Define A as the event that the chip is made from machine 1, and define B as the event that the chip is Bad. Then P(A) = 0.4, $P(B^c) = 0.7$, and $P(A \cup B) = 0.7$. The questions are then to determine

(a)
$$P(A^{c})$$
.
(b) $P(A \cap B)$.
 $P(B^{c}) = 0.7$
 $P(A \cup B) = 0.7$
 $P(A \cup B) = 0.7$
(a) $P(A^{c}) = 1 - P(A) = 1 - 0.4 = 0.6$
(b) $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 $= 0.4 + [1 - P(B^{c})] - 0.7$
 $= 0.4 + [0.3 - 0.7]$
 $= 0$
 $= 0$ machine 1 does not make bad chips.

Exercise 6.

Events A and B are defined on a sample space S. if P(A) = 0.6, P(B) = 0.5, and $P(A \cup B^c) = 0.9$, what is $P(A^c \cup B)$?



Given: $P(A \cup B^{c}) = 0.9$.

Break
$$AUB^{c}$$
 into disjoint events.
 $P(AUB^{c}) = P(ABB) + P(AB^{c}) + P(A^{c}B^{c})$
 $= 1 - P(A^{c}B) = 0.9$
so $P(A^{c}AB) = 0.1$

And
$$P(A^{c}UB) = P(A^{c}) + P(B) - P(A^{c}AB) = (1 - 0.6) + 0.3$$

= 0.8

In fact, there are many ways to solve this. The completed probability table works like: