Short intermediary topic:
Building probability models
(a.k.a. assigning probabilities to events)

Putting it all together:

1. Identify random experiment (procedures and outcomes)
2. Specify the sample space S
3. Identify events of interest
4. Make a probability assignment that satisfies the axioms
5. Compute probabilities of other events via the axioms

This set of notes considers step 4 a bit more.
many probability assignments are possible that satisfy the axioms.
A good probability assignment also reflect o experimental otservationó or previous experience
The goal is to create the simplest model that explains all relevant aspects

Discrete sample spaces

$$
S=\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\} \quad|s|=n
$$

Case 1:
"Equally likely outcomes"

$$
\text { means } P\left(\left\{a_{i}\right\}\right)=\frac{1}{n} \text { for } 1 \leqslant i \leqslant n
$$

and thus $P(B)=k / n$ if B has K elements
examples: pull a ball out of an worn draw a marble from a box pick a cand any card roll a fair die

Case 2: Observe relative frequency of events and assign accordingly

Note: The topic of counting (chapter 2.3) is about assigning probability model in cases where all elements in a sample space are equally likely

Continuous sample spaces
In one dimension :
S iv \mathbb{R} (all real numbers)
or S is an interval (or union of intervals) of \mathbb{R}.
\Rightarrow assign probabilities to intervals
Example: $\quad \delta=\{x \in \mathbb{R}: x \in[0,1]\}$
A reasonable model is to san

$$
P(A)=b-a, \quad \text { when } A=\{x \in S: x \in[a, b]\}
$$

when $0 \leq a \leq b \leq 1$
$b-a$ is the length of the interval relative to the length of the sample space

In 2 dimensions:
Sis \mathbb{R}^{2} (pairs of real numbers)
\Rightarrow assign probabilities to regions Assuming equally likely,

$$
P(\text { region } R)=\frac{\operatorname{area}(R)}{\operatorname{area}(S)}
$$

It is not always reasonable to
 assume equally likely!

Be careful

