Set theory (section 2.1.3)
A set is a collection of objects
A,B,C... a set (capital roman letters)
Set notation:

$$S = \{x \in 72 : x > 5\}$$
 will call
a member
of the set
delineation
"a member of" of all
integers are actually
is uch that"
 $R =$ the set of all real numbers
 e a member of, or an element of
 f not an element of
 f the source, containing all
 f the source, possible "elements"

Discrete set
$$S = \{0, 2\}$$

of integers $S = [0, 2]$
set of
real numbers $S = [0, 2]$
These $S = (0, 2)$
 $S =$

For these, ACB, or Ais a subset of B if every element in A is also om element in B (for every wEA, then weB) More definitions A=B = sets are equal if and only if (iff) they contain the same elements otherwise A ≠ B, the sets are not equal.

Seto A and B one disjoint or mutually exclusive if ANB = \$\phi.

Combinations of set operations We use parenthises to denote order of operations. AUB = BUA Commutative ANB=BNA AV(BUC) = (AUB)UC Associative $A \cap (B \cap c) = (A \cap B) \cap c$ AU(BAC) = (AUB)A(AUC)Distributive $A \cap (B \cup C) = (A \land B) \cup (A \cap C)$ Identities $A \cup \phi = A$ $A \cap S = A$ $(A^{c})^{c} = A$ Complements $AVA^{c} = S$ $A \wedge A^{c} = \Phi$ AVS = S $A \cap \phi = \phi$ Set différence (aka velative complement) $A-B=\frac{2}{3}x:x\in A \text{ and } x\notin B$ those elements in A that are not elements of B. Note: do not subtract the values of the elements; remove A-B = ANB° elements

Example from HW

A is everything on Left B is everything on top C is inside the inner box

$$2nd$$
 (A (1B)^c = A^cUB^c
(A (1B) is shaded
(A (1B)^c is shaded
(A (1B)^c is unshaded
as is A^cUB^c

Unions and Intersections can be repeated
for an arbitrary number of sets
$$\bigcup_{i=1}^{n} A_i = A_i \lor A_2 \lor A_3 \cdots \lor A_n$$

i=1

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots$$

Definitions:
mutually exclusive: A, , Ar, , An are mutually
exclusive if for every it; A: (A; = \$,
i.e., if A: and A; are disjoint
Collectively exhaustive: A1, A2, ..., An are collectively
exhaustive if
$$\bigcup_{i=1}^{n} A_i = S$$

partition: A, Ar, ..., An form a partition if
they are both mutually exclusive and
collectively exhaustive

Mutually exclusive Ai NA; = \$ for all 2, j

Collectively exhaustive $\hat{U}_{i=1}^{n} A_{i}^{i} = S$

Every element in S is in at least one event A;

Partition

Both mutually exclusive and collectively exhaustive

