Set theory (Section 2.1.3)
A set is a collection of objects
$A, B, C \ldots$ a set (capital roman letters)
Set notation:

a restriction on what integers are actually in the set
\mathbb{R} « the set of all real numbers
\in a member of, or an element of
\notin not an element of
c a subset of
S the sample space, containing all
$\underset{\text { Discrete set }}{\text { of integers }} \quad S=\{0,2\}$

Set of
$\begin{aligned} & \text { set of } \\ & \text { real numbers } \\ & S\end{aligned}=[0,2]$
$\begin{aligned} & \text { Set of } \\ & \text { real numbers }\end{aligned} S=(0,2)$
These 3 are all different sets!
Additional examples of sets

$$
\begin{array}{ll}
B=\{t \in \mathbb{R}: & 0 \leq t<\infty \\
A=\left\{\begin{array}{ll}
t \in \mathbb{R}: & 1 \leq t \leq 2
\end{array}\right\}
\end{array}
$$

and
$B=\{$ Purdue ECE students\}
$A=\{$ ESE 302 section 2 students $\}$
For these, $A \subset B$, or A is a subset of B if every element in A is also on element in B (for every $w \in A$, then $w \in B$)

More definitions
$A=B \leftarrow$ sets are equal if and only if (iff)
then contain the same element otherwise $A \neq B$, the sett ane not equal.

Note: $A=B$ iff $A \subset B$ and $B \subset A$. (This is a common way to prove that one set is equal to another.)

The set with no elements is the null set or the empty set Denoted ϕ or $\}$

Questions: is $\phi \subset A$? is $A \subset A$?
is $\quad \phi \in A ?$ is $A \in A$?

Three basic set operations:
Union, Intersection, complement
Union $A \cup B=\{x: x \in A$ or $x \in B\}$
(also $A+B$)

Intersection $A \cap B=\{x: x \in A$ and $x \in B\}$ (also $A B$)

Complement $\quad A^{c}=\{x: x \notin A\}$ (also \bar{A})

Seto A and B one disjoint or mutually exclusive if $A \cap B=\phi$.

Combinations of set operations
We use parentheses to denote order of operations.
Commutative

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

Associative

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

Distributive $\quad A \cup(B \cap C)=(A \cup B) \wedge(A \cup C)$

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Identities $\quad A \cup \phi=A \quad A \cap S=A$
Complements $\quad\left(A^{c}\right)^{c}=A$

$$
\begin{array}{ll}
A \cup A^{c}=S & A \cap A^{c}=\phi \\
A \cup S=S & A \cap \phi=\phi
\end{array}
$$

Set difference (aka relative complement)

$$
A-B=\{x: x \in A \text { and } x \notin B\}
$$

those elements in A that are not elements of B.

$$
A-B=A \cap B^{c}
$$

Note: do not subtract the values of the element; ; remove $\frac{\text { elements }}{\text { and }}$

Example from HW
a) $(A \cup B \cup C)^{C}=A^{C} \cup B^{C} \cup C^{c}$

A is everything on LeftB is everything on top c is inside the inner box

false

Demorgan's Laws: combining complements, intersections,

1 st

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

AUB is shaded $(A \cup B)^{C}$ is unshaded. and unions

and

$$
(A \cap B)^{c}=A^{c} \cup B^{c}
$$

$(A \cap B)$ is shaded $(A \cap B)^{c}$ is unshaded as is $A^{c} \cup B^{C}$

Unions and Intersection's can be repeated for an arbitrary number of sets

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup A_{3} \cdots \cup A_{n}
$$

or even an infinite number of sets

$$
\bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup \ldots
$$

Definitions:
mutually exclusive: A, A_{2}, \ldots, A_{n} are mutually exclusive if for every $i \neq j A_{i} \cap A_{j}=\phi$, ie., if A_{i} and A_{j} are disjoint
collectively exhaustive: $A_{1}, A_{2}, \ldots, A_{n}$ we collectively exhaustive if $\bigcup_{i=1}^{n} A_{i}=S$
partition: $A_{1}, A_{2}, \ldots, A_{n}$ form a partition if they are both mutually exclusive and collectively exhanotive

Visually:
Mutually exclusive

$$
A_{i} \cap A_{j}=\phi \quad \text { for all } i j j
$$

Collectively exhaustive

$$
\bigcup_{i=1}^{n} A_{i}=S
$$

Every element in S is in at least one event A_{i}

Partition
Both mutually exclusive and collectively exc anotive
 $A_{1}, A_{2}, \ldots, A_{5}$ form a partition

