$11 / 2 / 21$ Exam review
common pmfs + pdfs
conditional prob. conditioned on events conditional moments
PDF of $g(x)=y$
zRUs joint cdf, pdf, pmf
marginal " "
independence
common puffs
Bernoulli, binomial, geometric, Poisson, uniform

Bernoulli: is the next car that passer

$$
A=\{\text { red car }\}
$$

$$
x=\left\{\begin{array}{lc}
1 & \text { if A) } \\
0 & \text { else }
\end{array}\right.
$$

Binomial tencars, how many of them are red?

$$
P_{x}(x)=\binom{10}{x} p^{x}(1-p)^{10-x}
$$

Geometric haw many cars until fist red one

$$
\begin{array}{ll}
P=p(\text { success }) \quad S & =\{0,1, \ldots\} \\
S & =\{1, \ldots\}
\end{array}
$$

wite down your sample space

Poisson: cars on a busy highway, few are red.
\# cars that pass in a fixed time period
common Rdfs
uniform
exponential

exponential (and geometric) RVS are memoryless
same shape ugardless of where you start counting time

$$
\begin{aligned}
P(x>t+h & \mid x>t) \\
= & P(x>h)
\end{aligned}
$$

$f_{x}(x)$
unto

$$
x
$$

Gaussian

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

$$
\begin{aligned}
P(X & \leq a) \quad Z \sim N(0,1) \\
& =P\left(\frac{X-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right) \\
& =P\left(Z \leq \frac{a-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

conditional paf/pdf/cdf

- definitions
- them of total probability
- inference (reaming)

$$
\begin{aligned}
& p_{x}(x \mid A)=\frac{P(x=x \cap A)}{P(A)} \\
& F_{x}(x \mid A)=\frac{P(x \leq x \cap A)}{P(A)} \quad \text { if } P(A) \neq 0 \\
& f_{x}(x \mid A)=\frac{d}{d x} F_{x}(x \mid A) \\
& f_{x}\left(x \mid A^{c}\right)
\end{aligned}
$$

thm total poob

$$
\begin{array}{r}
f_{x}(x)=\quad f_{x}(x \mid A) P(A) \\
+f_{x}\left(x \mid A^{c}\right) P\left(A^{c}\right)
\end{array}
$$

thm of total expectation'

$$
\begin{aligned}
E(X)=E(& X \mid A) P(A) \\
& +E\left(X \mid A^{c}\right) P\left(A^{c}\right)
\end{aligned}
$$

conditioning on events that depend on X

$$
A=\{X \in B\}
$$

$$
f_{x}(x \mid A)
$$

$$
=\left\{\begin{array}{cl}
\frac{f_{x}(x)}{P(A)} & \text { if } x \in A \\
0 & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
E(x \mid A) & =\int_{a l l x} x f_{x}(x \mid A) d x \\
E(x) & =\int_{\text {all }} x f_{x}(x) d x
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{Var}(X \mid A)=\quad \text { variance of } \\
\quad f_{x}(x \mid A) \\
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \\
\operatorname{Var}(X \mid A)=E\left(X^{2} \mid A\right) \\
-E(X \mid A)^{2}
\end{array}
$$

Derived RUs

if we know $f_{x}(x), g(x)=y$, what's $f_{y}(y)$?

$$
E(g(x))=\int_{\text {allx }} g(x) f_{x}(x) d x
$$

2-step proces

- find cdf of Y $F_{y}(y)$
- 后 differentate urt y to get $f_{y}(y)$
- substitute to maler $f_{y}(y)$ a true function of y.
chech: is answer a paf?

$$
F_{y}(y)=P(Y \leqslant y)=P(g(x) \leqslant g)
$$

manipulate this until see something like

$$
P(X \leq h(y))=F_{x}(h(y))
$$

$$
\begin{array}{ll}
\text { or } & P\left(h_{1}(y)<x<h_{2}(y)=\frac{F_{x}\left(h_{2}(y)\right)}{F_{x}(h(y))}\right. \\
\text { or } & P(x>h(y)) \\
\left.=1-F_{x}(h y)\right)
\end{array}
$$

traulate that into something w) $F_{x}(\ldots)$
\rightarrow expression for $F_{y}(y)$ differentiate

$$
f_{y}(y)=\frac{d F_{y}(y)}{d y}
$$

use chain rule.

$$
\text { ex: } F_{y}(y)=F_{x}(h(y))
$$

then $f_{y}(y)=f_{x}(h(y)) \frac{d h(y)}{d y}$
\longrightarrow expression for $f_{y}(y)$ man still have $f_{x}($.
ex: $f_{y}(y)=3 y f_{x}(3 y)$
substitute $x=3 y$ every where in $f_{x}(x)$ expression
$\Rightarrow f_{y}(y)$ interns of y

- bounds in terms of y
- will be a pelf

$$
F_{y}(y)=P(y \leqslant g)
$$

