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This is a closed book exam with 8 multi-part problems. Neither calculators nor help sheets are
allowed.

Cheating will result in a zero on the exam and possibly failure of the class. Do not cheat!

Use of any electronics is considered cheating.

Put your name or initials on every page of the exam and turn in everything when time is up.

Write your answers in the boxes provided. We will be scanning the exams, so DO NOT WRITE
ON THE BACK of the pages!.
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Problem 1. (True/False: 4 points each, total 24 points)

For each of the following statements, determine which is valid.
If you show your reasoning you might get partial credit.
Finding a counter-example might be helpful if the answer is FALSE.
(Note: if a statement is not always true, then it is FALSE.)

Clearly label each statement T or F in the box to the left of the problem.

(a) If X is a RV and FX(x) is its CDF, then P (X > x) = 1− FX(x) for all x.

(b) If X is a RV and fx(x) is its PDF, then fX(x) ≤ 1 for all x.

(c) P (A ∩B) = P (A) + P (B)− P (A ∪B) for any two sets A and B.

(d) E[(X − 1)3] = [E(X)− 1]3

(e) If A, B, and C form a partition, then Ac, Bc, and Cc are collectively exhaustive.

(f) A correct mathematical expression for “the probability that X is no more than 1
away from a constant c is at least 95%” is

P (|X − c| ≤ 1) ≥ 0.95
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Problem 2. (12 points (6 points for (a); 4 points for (b)))
One Blue and one Green die are rolled. Both dice are fair. Let A be the event the number on the
Green die is even, and let C be the event that the sum of the two rolls is equal to 6.

(a) What is P (C|A)?

(b) Are events A and C independent? Explain your reasoning.
(No points without a proper reason.)

(a)

(b)
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Problem 3. (12 points (6 points each part))
An engineer is designing a system to detect whales in the ocean. Let the event W indicate a whale
is present, and let W c indicate there is no whale. Let the event D indicate the system decides a
whale is present, and let Dc indicate the system decides there is no whale.

(a) If the system decides wrong 5% of the time there actually is a whale, and 5% of the time
there is actually no whale, and the prior probability of there being a whale is P (W ) = 0.2,
what is the probability that the system decides D?

(b) Let there be a cost for two possible outcomes: that of missing the whale, and that of saying
there’s a whale when there’s no whale. Let the cost of the first case be 1000 for each occur-
rence, and the cost of the second be 10. Assume there is no cost to a correct decision. Using
the result from part (a), what is the expected cost of this system each time it is used?

(a)

(b)
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Problem 4. (12 points (6 points each part))
A wallet contains two coins. One is a fair coin; the other has a probability of tails of 0.25. You
pick a coin at random and give the other coin to someone for safe keeping.

(a) You flip the coin you picked; what is the probability of getting a tails?

(b) You flip the coin you picked a second time. What is the probability of getting a tail on the
second flip, given that you got a tail on the first flip?

(a)

(b)
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Problem 5. (12 points (6 points each part))

Suppose the PDF of X is given by

fX(x) =

{
cx2 if 0 ≤ x ≤ 2
0 otherwise

(a) Find the value of the constant c.

(b) Find P (X ≤ 1).

(a)

(b)
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Problem 6. (12 points (6 points each part))

Suppose the PDF of X is given by

fX(x) =

{
x+ δ(x− 1/2)/2 if 0 ≤ x ≤ 1
0 otherwise

(a) Find the expected value of X: E(X).

(b) Find the variance of X: VAR(X)

(a)

(b)
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Problem 7. (12 points (6 points each part))

Suppose the CDF of the random variable Y is given by

FY (y) =


0 for y < 0
y/4 for 0 ≤ y < 2
3/4 for 2 ≤ y < 3
y/4 for 3 ≤ y < 4
1 for y ≥ 4

(a) Sketch the CDF. Is Y a continuous, discrete, or mixed random variable?

(b) Find P (1 ≤ Y ≤ 2).

Sketch:

Continuous, discrete, or mixed:

(b)
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Problem 8. (6 points)

Let X be a random variable with mean µ and variance σ2, and let Y = 2X2 + 4X − 1.
Express E(Y ) in terms of µ and σ.

E(Y ) =
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Extra space to solve – label problem clearly so I can give you credit!
ALSO: Write at the bottom of original problem that you’re solving here, so I know

to look here!
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