Lecture 15

$$
9 / 27 / 21
$$

Last fine: Geometric + binomial
This time: Exam review -requires input from everyone

Seating chart will be posted before exam
Extra office hours today: 1-2 pm

$$
3-4 \mathrm{pm}
$$

Any more left-handers?

$$
\begin{aligned}
& \frac{\text { Disjoint }}{\uparrow} \times \frac{\text { independent }}{\uparrow} \\
& A \cap B=\varnothing \\
& P(A \cap B)=P(A) P(B)
\end{aligned}
$$

if $P(A) \neq 0$

$$
P(B) \neq 0
$$

There must some non- ϕ intersection'
if $A+B$ are independent and $A+C$

$$
B+C
$$

then then may not be mutually independent ned $P(A \cap B \cap C)=P(A) P(B) P(C)$

Sets
Probability fevents - Axioms R / s
meanings of $\{1,2\},(1,2)$ and $[1,2]$
mutually exdusive - the intersections are collectively exhans tide ϕ partition
every element is in at least one set

Converting English to math
describing the experiment, samplespace, event of interest.

Set opevatrois + combinations

$$
A \cap B=B \cap A \quad \text { yes }
$$

commutativity
distributivity
associativity
DeMorgan's Rules $(A \cap B)^{c}=A^{c} \cup B^{c}$

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

$$
A-B=A \cap B^{c}
$$

Probabilities
Table, Tree
Axioms + corollanjes

$$
\begin{aligned}
& P(A) \geqslant 0 \\
& P(S)=1
\end{aligned}
$$

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B) \text { if } A \cap B=\varnothing \\
& P\left(A^{C}\right)=1-P(A) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A) \leq 1 \\
& P(\phi)=0 \\
& \text {-generalizes } \\
& \text { if } A \subset B \quad C=\text { a subset of } \\
& \text { penalizes } \\
&
\end{aligned}
$$

$$
P(B) \geqslant P(A)
$$

conditional probability
Definition $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)} \begin{aligned} & \text { if } \\ & \text { PB) } \\ & \neq 0\end{aligned}$
Theorem of Total probability
Bayes Rule
Concept - we know something happened (event B).
consider what else can happen now
\Rightarrow narrow the sample space
The total pat.

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

if the B_{i} 's form a partition
Bayes Rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

flip the conditioning order

Tree conditional prob. sequential experiments

Random Variables
pdf
$c d f$
mf
going between them
their properties moments
discrete, mixed, continues
definition' of RV
CDF cumulative diotributiai function.

$$
P(y \leq x)=\Gamma_{x}(x)
$$

properties of CDF
non decreasing

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F_{x}(x)=0 \\
& \lim _{x \rightarrow+\infty} F_{x}(x)=1
\end{aligned}
$$

$$
P(a<X \leqslant b)=F_{X}(b)-F_{X}(a)
$$

If x is in a continuass portion of $F_{x}(x)$
then $P(x=x)=0$
discontinuities are ok

caf 皀 a probabilito
paf prob. density funclion.

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

pal is NOT a probability

$$
\begin{aligned}
& P(a \leq x \leq b)=\int_{a}^{b} f_{X}(x) d x \\
& F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t \\
& 1=\int_{-\infty}^{\infty} f_{X}(t) d t \\
& E(x)=\int_{-\infty}^{\infty} t f_{x}(t) d t \\
& f_{X}(x) \geqslant 0 \rightarrow \text { na upper } \\
& \text { bound }
\end{aligned}
$$

Probability mass functim.

$$
P(X=x)=p_{x}(x)
$$

only defined discrete RVs

$$
\begin{aligned}
& 1=\sum_{x \in S_{x}} p_{x}(x) \\
& E(x)=\sum_{x \in S_{x}} x p_{x}(x) \\
& E(g(x))=\sum_{x \in S_{x}} g(x) p_{x}(x) \\
& E(g(x))=\int_{-\infty}^{\infty} g(t) f_{x}(t) d t
\end{aligned}
$$

$P_{x}(x)$

drocute RV
$f_{y}(x)$

mixed RVs

