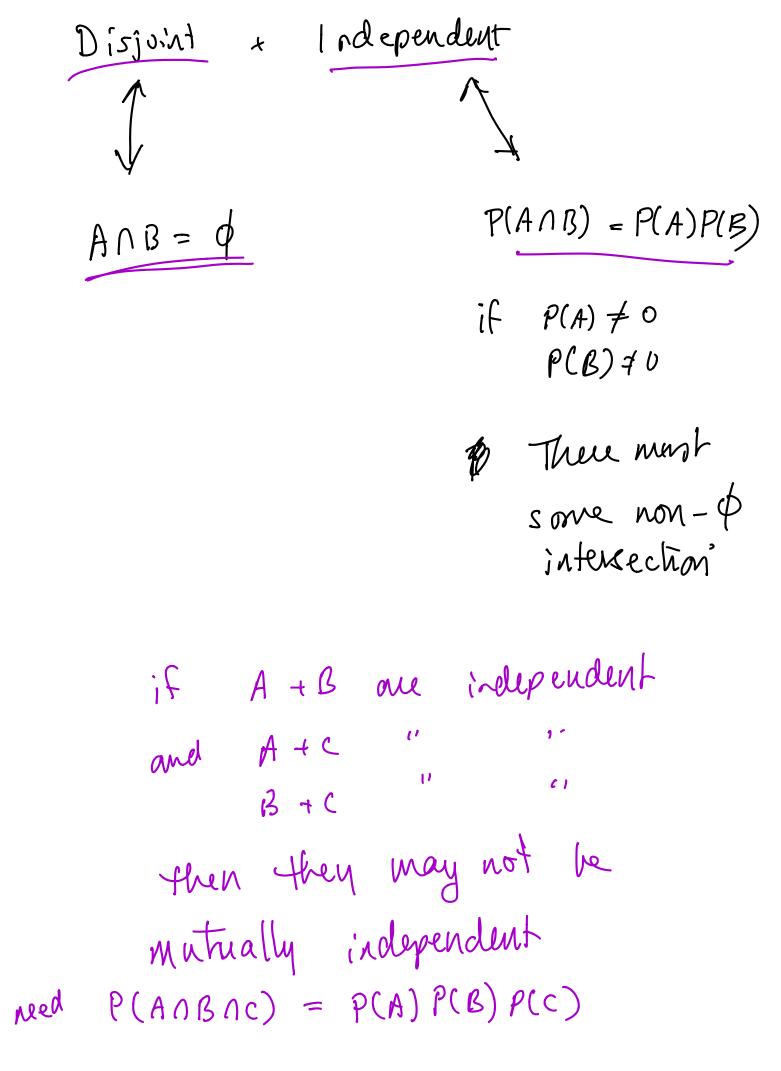
Lecture 15 9/27/21

Last time : Geometric + binomial This time : Exam review -requires input from everyone

Seating chart will be posted before exam Extra office hours today: 1-2 pm 3-4 pm

Any more Left -handers?



operatrais + combinations Set ANB = BNA yes commutativity distributivity associativity $(A \cap B)^{c} = A^{c} U B^{c}$ De Morganis Rules (AUB) = ACAB A-B=ANB

Probabilities
Table, Tree
Axions + corollarizes

$$P(A) \ge 0$$

 $P(S) = 1$

$$P(A \cup B) = P(A) + P(B) \quad \text{if } A \cap B = \phi$$

$$P(A \cup B) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) \leq 1$$

$$P(\Phi) = 0 \quad \text{generalizes}$$

$$qeneralizes \quad C = a \text{ subset of}$$

$$if \quad A \subset B \quad E = an \text{ element of}$$

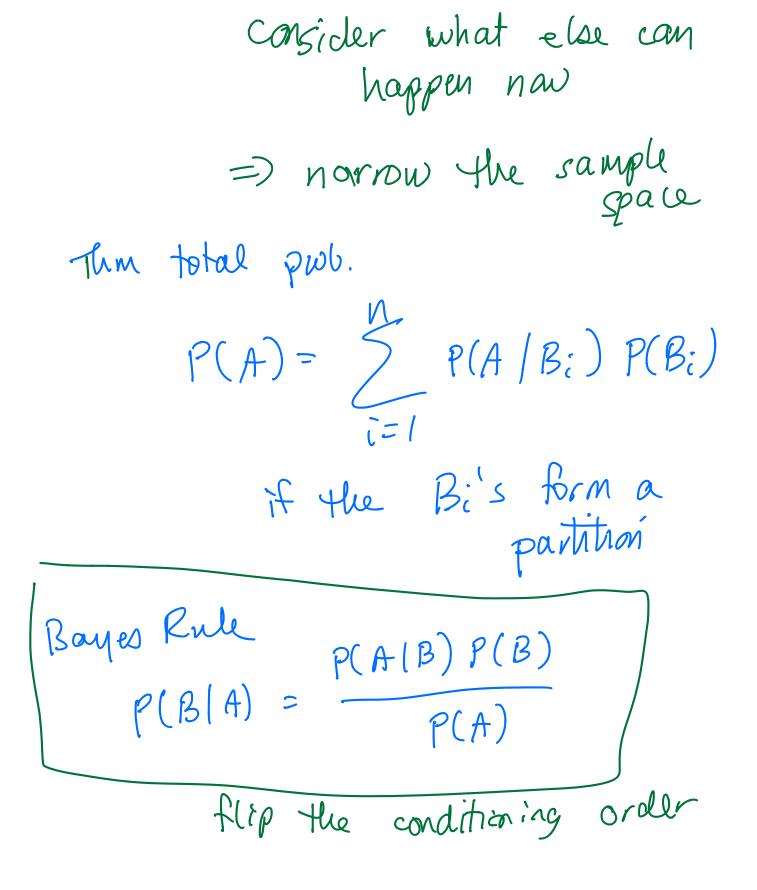
$$P(B) = P(A)$$

$$Conditional \quad probability \quad P(A \cap B) \quad \text{if } P(B) \quad = \Phi(A)$$

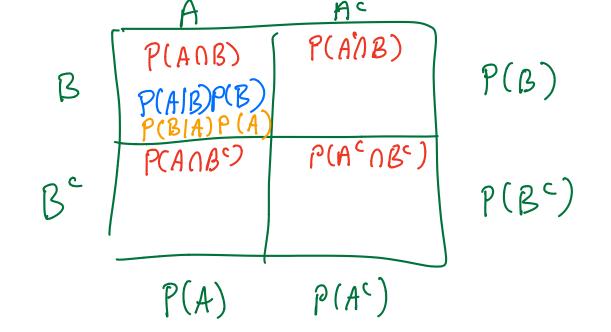
$$Conditional \quad probability \quad P(A \cap B) \quad \text{if } P(B) \quad = \Phi(B) \quad = \Phi(B) \quad = \Phi(B) \quad = \Phi(B)$$

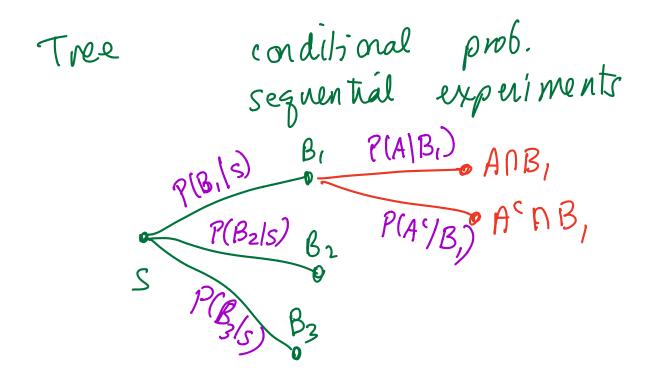
$$The orem of \quad Total \quad probability \quad P(B) \quad = \Phi(B) \quad = \Phi(B)$$

$$Concept - we \quad know \quad something \quad happened \quad (event \quad B).$$



Table

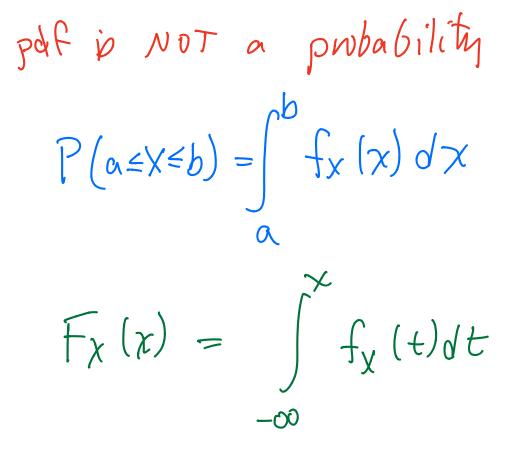


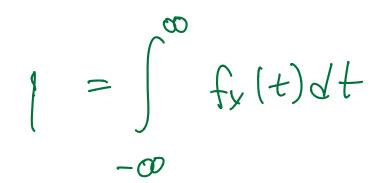


Random Variables Pdf cdf pmf

going between them
their properties
moments
discrete, mixed, continuans
definition
$$\mathcal{B}$$
 RU
commutative distribution fraction:
 eDF
 $P(X \leq x) = F_{X}(x)$
properties $\mathcal{B} = CDF$
non decreasing
Norok
lim
 $F_{X}(x) = 0$
 $\chi \rightarrow +\infty$
 $F_{X}(x) = 1$

 $P(a < X \le b) = F_{x}(b) - F_{x}(a)$ x is in a continuaus lf portion of Fx (x) Then P(X = x) = 0discontinuities are ok $P(X = a) = F_x(a) - F_x(a)$ jump height continuous from right a probability -discontinuity is on left pat prob. density function. $f_{X}(\chi) = \sqrt{F_{X}(\chi)}$





 $\overline{E}(x) = \int_{-\infty}^{\infty} t f_{x}(t) dt$

$f_{x}(x) \geq 0$	\longrightarrow	na	upper bound
			bound

Probability mass function $P(X = x) = p_x(x)$ only defined discrete RVS $I = \sum_{x \in S_X} p_x(x)$

