ECE 302: Probabilistic Methods in Electrical and Computer Engineering

PuRdUE

Instructor: Prof. A. R. Reibman

Past Exam Questions

(Fall 2015, Spring 2016, Fall 2016, Fall 2017) Chapter 5 and beyond

These form a collection of problems that have appeared in either Prof. Reibman's real exams or "sample exams." These can all be solved by applying the material we covered in class that appears in Chapter 5, 7, 9, and 10 in our textbook.

I will post the last pages of the final - with the formulas that you'll have available to you separately.

Problem 1. (Yes/No: 2 points)
Consider a joint CDF $F_{X, Y}(x, y)$. Is it always true that $F_{X, Y}(3,2) \leq F_{X, Y}(4,3)$?
Problem 2. (Yes/No: 2 points)
Consider a joint CDF $F_{X, Y}(x, y)$. Is it always true that $F_{X, Y}(83,84)<F_{X, Y}(84,85) ? \mathbb{N}$
Problem 3. (Yes/No: 2 points)
Consider a joint CDF $F_{X, Y}(x, y)$. Is it always true that $\lim _{y \rightarrow \infty} F_{X, Y}(5, y)=1$? N

2: could be equal

$$
\text { 3: } \quad \lim _{y \rightarrow \infty} F_{x y}(5, y)=F_{x}(5) \neq 1
$$

Problem 4.
Random variables X and Y have the joint PDF

(e) Find $\operatorname{COV}(X, Y)$

b)

$$
\begin{aligned}
P(x>2) & =\int_{x=2}^{3} \int_{y=x}^{3} \frac{1}{2} d y d x=\left.\int_{2}^{3} \frac{y}{2}\right|_{x} ^{3} d x=\int_{2}^{3} \frac{3-x}{2} d x \\
& =\left(\frac{3 x}{2}-\left.\frac{x^{2}}{4}\right|_{2} ^{3}=\frac{9}{2}-\frac{9}{4}-(3-1)=\frac{9}{4}-2=\frac{1}{4}\right.
\end{aligned}
$$

or! by an area argument, since the joint pdf is flat, the area of the red triangle above relative to the overall area, $\frac{1 / 2(1)(1)}{\frac{1}{2}(2)(2)}=\frac{1}{4}$.
c) $f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y$ and when we substitute

$$
=\int_{x}^{3} \frac{1}{2} d y=\begin{aligned}
& \frac{3-x}{2} \text { when } 1 \leqslant x \leqslant 3 \\
& \text { and }=0 \quad \text { otherwise joint polf }
\end{aligned}
$$

Problem 4 (id)

$$
\begin{aligned}
& \text { Problem 4(.d) } \\
& \begin{aligned}
E(x) & =\int_{\infty}^{\infty} x f_{x}(x) d x=\int_{1}^{3} x \frac{3-x}{2} d x=\frac{3 x^{2}}{4}-\left.\frac{x^{3}}{6}\right|_{1} ^{3} \\
& =\frac{3.9}{4}-\frac{22}{6}-\left(\frac{3}{4}-\frac{1}{6}\right)=\frac{9.9}{12}-\frac{27.2}{12}-\frac{9}{12}+\frac{2}{12} \\
& =\frac{1}{12}\left(8(-54-7)=\frac{20}{12}=\frac{5}{3}\right.
\end{aligned}
\end{aligned}
$$

He) $\operatorname{cov}(x, y)=E(x y)-E(x) E(y)$
Know $E(x)=5 / 3$. But we don't yet know $E(y)$

$$
f_{y}(y)=\int_{00}^{\infty} f x y(x, y) d x=\int_{1}^{y} \frac{1}{2} d x=\frac{y-1}{2} \text { when } 1 \leq y \leq 3
$$

and so $E(y)=\int_{1}^{3} y f_{y}(y) d y=\int_{1}^{3} \frac{y^{2}-y}{2} d y$

$$
\begin{array}{r}
=\left(\frac{y^{3}}{6}-\left.\frac{y^{2}}{4}\right|_{1} ^{3}=\frac{27}{6}-\frac{9}{4}-\left(\frac{1}{6}-\frac{1}{4}\right)\right. \\
=\frac{26}{6}-2=\frac{14}{6}=7 / 3
\end{array}
$$

and finally

$$
\begin{aligned}
& \text { Finally } \\
& \begin{aligned}
& E(x y)= \int_{x=1}^{3} \int_{y=x}^{3} \frac{x y}{2} d y d x=\int_{1}^{3}\left(\frac{9 x}{4}-\frac{x^{3}}{4}\right) d x \\
&= \frac{9 x^{2}}{8}-\left.\frac{x^{4}}{16}\right|_{1} ^{3}=\left(\frac{9.9}{8}-\frac{9.9}{16}\right)-\left(\frac{9}{8}-\frac{1}{16}\right) \\
&= \frac{72}{8}-\frac{80}{16}=9-5=4 \quad \text { so.. } \operatorname{cov}(x, y)= \\
& \quad 4-\left(\frac{5}{3}\left(\frac{7}{3}\right)=\frac{36-35}{9}=\frac{1}{9}\right.
\end{aligned}
\end{aligned}
$$

Problem 5. (20 Points)
Given the Joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}c(2-y) & \text { for } 0<x<4 \text { and } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is the value of c ?
(b) Find the marginal PDF of $X, f_{X}(x)$, and the marginal PDF of $Y, f_{Y}(y)$.
(c) Are X and Y independent? Explain why or why not.
(d) What is $P(X+Y<2)$? (Hint: you may find it helpful to draw a picture.)

Region of Support:

$$
\begin{aligned}
&=\int_{0}^{4} c\left(2 y-\left.\frac{y^{2}}{2}\right|_{0} ^{1} d x\right.=\int_{0}^{4} c(2-1 / 2) d x \\
&=\left.c \frac{3}{2} x\right|_{0} ^{4} \\
&=c \cdot 6=1 \\
& f_{x}(x)=\int_{-\infty}^{\infty} f x y(x, y) d y \Rightarrow c=1 / 6 \\
&=\int_{0}^{1} c(2-y) d y=c\left(2 y-\left.\frac{y^{2}}{2}\right|_{0} ^{1}=c\left(2-\frac{1}{2}\right)=\frac{1}{6}\left(\frac{3}{2}\right)\right.
\end{aligned}
$$

$=\frac{3}{12}=\frac{1}{4}$ when $0 \leq x \leq 4$
c)

$$
\begin{aligned}
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x=\int_{0}^{4} c(2-y) d x \\
& =c(2-y) \times\left.\right|_{0} ^{4}=c(2-y) 4=\begin{array}{l}
\frac{2}{3}(2-y) \\
\text { when } 0 \leq y \leq 1
\end{array}
\end{aligned}
$$

and $f_{x y}(x, y)=f_{x}(x) f_{y}(y)$ for all x, y because $\frac{1}{4}\left(\frac{2}{3}(2-y)\right)=\frac{1}{6}(2-y)$
So X and Y must be independent
d)

$$
p(x+y<2)
$$

Intersection of
the region of suppnt and the event of

$$
\begin{aligned}
& P(x+y<2)=\int_{y=0}^{1} \int_{x=0}^{2-y} c(2-y) d x d y \\
& =\left.\int_{y=0}^{1} c(2-y) x\right|_{x=0} ^{2-y} d y=\int_{0}^{1} c(2-y)^{2} d y \\
& =c\left(4 y-4 y^{2} / 2+y^{3} /\left.3\right|_{0} ^{1}=\frac{1}{6}(4-2+1 / 3)\right. \\
& =\frac{1}{6}(7 / 3)=7^{7} / 18
\end{aligned}
$$

Problem 6. (Multiple choice: 5 Points)
Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}15 y & \text { for } x^{2}<y<x \\ 0 & \text { otherwise }\end{cases}
$$

Which represents the marginal density of $Y, f_{Y}(y)$?
(Hint, draw a clear picture and you may get partial credit.)
(a)

$$
f_{Y}(y)= \begin{cases}15 y & \text { for } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(b)

$$
f_{Y}(y)= \begin{cases}15 y^{2} / 2 & \text { for } x^{2}<y<x \\ 0 & \text { otherwise }\end{cases}
$$

(c)

$$
f_{Y}(y)= \begin{cases}15 y^{2} / 2 & \text { for } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(d)

$$
f_{Y}(y)= \begin{cases}15 y^{3 / 2}\left(1-y^{1 / 2}\right) & \text { for } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(e)

$$
f_{Y}(y)= \begin{cases}15 y^{3 / 2}\left(1-y^{1 / 2}\right) & \text { for } x^{2}<y<x \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& f y(y)=\int_{y}^{\sqrt{y}} 15 y d x=\left.15 y x\right|_{x=y} ^{x=v y} \\
& =15 y[\sqrt{y}-y] \\
& =15 y^{3 / 2}\left(1-y^{1 / 2}\right) \quad 0 \leq y \leq 1
\end{aligned}
$$

Problem 7. (25 POINTS ((A) IS 7 POINTS; (B) IS 8 POINTS; (C) IS 10 POINTS))
Let X be a discrete RV with sample space $S_{X}=\{1,4\}$, e. ch equally likely. Given that we know $X=x$, a second RV Y is exponentially distributed with mean $1 / x$.
(a) What is the conditional pdf of Y given X ? \qquad two and only two
(b) What is the marginal pdf of Y ? possible values
(c) Find $E(Y)$. poss you may solve it any way (Hint: it will be faster to use the theorem of total expectations, but you may solve it any way
you wish.) you wish.)
a) from the back page, exponential w/ mean $1 / x$

$$
\Rightarrow f_{y}(y \mid X=x)=x \exp (-x y) \quad x>0, y \geqslant 0
$$

b)

$$
\begin{aligned}
f_{y}(y)=f_{y}(y \mid x=1) & p(x=1) \\
& +f_{y}(y \mid x=4) p(x=4)
\end{aligned}
$$

by the thenem of total probability,
and $P(x=1)=P(x=4)=1 / 2$

$$
f_{y}(y)=[\exp (-y)+4 \exp (-4 y)] / 2 \quad y \geqslant 0
$$

c) Herated expectations (or the theorem of total expectations)

$$
E(y)=E(E(y \mid x))=\sum_{x \in S_{x}} E(y \mid X=y) P_{x}(x)
$$

$E(Y \mid X=x)=1 / x$ from part a.

$$
E(y)=\frac{1}{2}\left[\frac{1}{1}+\frac{1}{4}\right]_{6}=5 / 8
$$

Problem 8. (15 POINTS) Let

$$
F_{X . Y}(x, y)= \begin{cases}x\left(1-e^{-2 y}\right) / 2 & \text { for } 0 \leq y \text { and } 0 \leq x \leq 2 \\ \left(1-e^{-2 y}\right) & \text { for } 0 \leq y \text { and } 2 \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(a) Use $F_{X, Y}(x, y)$ to compute the probability that $P(1<X \leq 2, Y \leq 3)$.
(b) Find $f_{X}(x)$.
(c) What is the probability that $P(X \leq 3)$
a)

$$
\begin{aligned}
& P(1<x \leq 2, y \leq 3)=P(1<x \leq 2, \infty<y \leq 3) \\
& =F_{x y}(2,3)-F_{x y}(2,-\infty)-F_{x y}(1,3) \\
& =\left(1-e^{-6}\right)-F_{x y}(1,-\infty) \\
& =\left(1-e^{-6}\right) / 2
\end{aligned}
$$

b) There are 2 ways to get there.

1. Find $f_{x y}(x, y)$ and integrate to get $f_{x}(x)$
2. $F_{x}(x)=\lim _{y \rightarrow \infty} F_{x y}(x, y)$ and find $f_{x}(x)$

The second way is easier.

$$
\begin{aligned}
& \text { Ex. }(x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
x / 2 & 0<x<2 \\
1 & x \geqslant 2
\end{array} \quad \text { so } \quad f_{x}(x)=\left\{\begin{array}{cc}
1 / 2 & 0<x<2 \\
0 & \text { else }
\end{array}\right]\right.
\end{aligned}
$$

c) $p(x \leq 3)=\int_{0}^{2} f_{x}(x) d x=\int_{0}^{2} \frac{d x}{2}=\square$

Problem 9. (25 Points) Let

$$
f_{X, Y}(x, y)= \begin{cases}c & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 2 \\ 2 c & \text { for }-1 \leq x \leq 0 \text { and }-1 \leq y \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch the region of support for X and Y.
(b) Find c.
(c) Find $f_{Y}(y \mid X=1)$, the conditional PDF of Y given $X=1$.
(d) Find $f_{X}(x)$.
a)

both regions are in the region of support
b) $1=\iint f_{x y}(x, y) d x d y$ but when yon ping in the actual function, you

$$
\begin{aligned}
& 1=\int_{-1}^{0} \int_{-1}^{0} 2 c d x d y+\int_{0}^{2} \int_{0}^{2} c d x d y=2 c(1)+c(4) \\
& \Rightarrow 1=6 c \Rightarrow c=16 \\
& \text { (using an area } \\
& \text { argument) }
\end{aligned}
$$

c) If $X=1$, then Y cannot be negative, so $0 \leq y \leq 2$.

if $X=1, y$ is a uniform $R r$ in this region So $f_{y}(y \mid x=1)=\left\{\begin{array}{cc}1 / 2 & 0 \leq y \leq 2 \\ 0 & \text { else }\end{array}\right.$
d)

$$
f_{x}(x)=\int_{-\infty}^{00} f_{x y}(x, y) d y
$$

we have to pay attention to the integration limits of y for each of the 2 regions

$$
f_{x}(x)=\left\{\begin{array}{cl}
\int_{-1}^{0} 2 c d y & \text { when } \\
-1 \leq x \leq 0 \\
\int_{0}^{2} c d y & \text { when } \\
0 & \text { else }
\end{array}\right.
$$

$$
=\left\{\begin{array}{cc}
2 c & -1 \leq x \leq 0 \\
2 c & 0 \leq x \leq 2 \\
0 & \text { else }
\end{array}\right.
$$

$$
f_{x}(x)=\left\{\begin{array}{cc}
1 / 3 & -1 \leq x \leq 2 \\
0 & \text { else }
\end{array}\right.
$$

Problem 13.
X and Y have joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}k & \text { for } 0<y \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(a) Find the marginal pdf's of X and Y (you don't have to find k yet).
(b) Find k.

area $1 / 2$
(c) Find $P(0<X<1 / 2 ; 0<Y<1 / 2)$.
(d) Find the conditional pdf's $f_{Y}(y \mid x)$ and $f_{X}(x \mid y)$.
a)

$$
\begin{aligned}
& \text { (e) Compute the conditional means } E(Y \mid x) \text { and } E(X \mid y) \text {. } \\
& f_{x}(x)=\int_{\infty}^{\infty} f_{x y}(x, y) d y
\end{aligned}
$$ integrate from ot x

$$
\begin{aligned}
&=\int_{0}^{x} k d y=\left\{\begin{array}{cc}
k x & \text { when } 0 \leq x \leq 1 \\
0 & \text { else }
\end{array}\right. \\
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x=\int_{y}^{1} k d x=\left\{\begin{array}{cc}
k(1-y) & \text { when } 0 \leq y \leq 1 \\
0 & \text { else }
\end{array}\right. \\
& \text { b) } K=2 \text { by inspection above }
\end{aligned}
$$

c) Solve using areas, since $f_{x y}(x, y)$ is flat area of shaded triangle is $\frac{1}{2}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$ area of full region of support is $\frac{1}{2}(1)(1)$

$$
\begin{aligned}
& \quad \Rightarrow p(x<1 / 2, y<1 / 2)=\frac{1 / 8}{1 / 2}=1 / 4 \\
& \text { d) } f_{y}(y \mid x)=\frac{f_{x y}(x, y)}{\left.f_{x} \mid x\right)}=\frac{k}{k x}= \begin{cases}\frac{1}{x} & \text { when } \\
0<y \leq \\
0 & \text { else } \\
& 0<y \leq x<1\end{cases} \\
& f_{x}(x \mid y)=\frac{f_{x y}(x, y)}{f_{y}(y)^{12}}=\left\{\begin{array}{rr}
\frac{1}{1-y} & \text { when } \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

$$
\{x<1 / 2 \cap x>y\}
$$

Problem 20. (20 Points)
picture for part
Let X and Y be random variables that have the joint pdf

$$
f_{X, Y}(x, y)=c(x+y), \text { for } 0 \leq x \leq 1,0 \leq y \leq 1
$$

(a) Find c.
(square region of support)
(b) Find the marginal PDFs of both X and of Y.
(c) What is $P(X>Y \mid X<1 / 2)$?

(d) Find $f_{Y}(y \mid x)$.
a) Know $l=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{x y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} c(x+y) d y d x$

$$
\begin{aligned}
& =\left.\int_{0}^{1} c\left(x y+\frac{y^{2}}{2}\right)\right|_{0} ^{1} d x=\int_{0}^{1} c(x+1 / 2) d x \\
& =c\left(\frac{x^{2}}{2}+\left.\frac{x}{2}\right|_{0} ^{1}=c\left(\frac{1}{2}+\frac{1}{2}\right)=c=1\right.
\end{aligned}
$$

b)

$$
\begin{aligned}
& f_{x}(x)=\int_{\infty}^{\infty} f_{x y}(x, y) d y=\int_{0}^{1}(x+y) d y=x y+\left.\frac{y^{2}}{2}\right|_{0} ^{1} \\
& f_{x}(x)=x+1 / 2 \text { when } 0 \leq x \leq 1
\end{aligned}
$$

x and y are interchangeable, so

$$
f_{y}(y)=y+1 / 2 \quad \text { when } 0 \leq y \leq 1
$$

c) Use Bayes Rule: $P(x>y \mid x<1 / 2)=\frac{P(x<1 / 2 \cap x>y)}{P(x<1 / 2)}$
numerator: $=\int_{0}^{1 / 2} \int_{0}^{y}(x+y) d x d y=\int_{0}^{1 / 2}\left(\frac{x^{2}}{2}+\left.x y\right|_{0} ^{y} d x\right.$

$$
\begin{aligned}
& =\int_{0}^{1 / 2} \frac{3 y^{2}}{2} d y=\left.\frac{3}{2} \cdot 3 y^{3}\right|_{0} ^{1 / 2}=1 / 16 \quad 1 / 16=1 / 6
\end{aligned}
$$

denominator $\int_{0}^{1 / 2} f_{x}(x) d x=3 / 8$
d) $f_{y}(y \mid x)=\frac{f_{x y}(x, y)}{f_{x}(x)}=\frac{x+y}{x+10}=\frac{2(x+y)}{2 x+1}$ when $0 \leq x \leq 1$

Problem 21. (15 POINTS)
Suppose X and Y are two random variables with $Y=X^{2}$. X is uniformly distributed with $S_{X}=\{-1,0,1\}$.
(a) Is X a discrete or continuous random variable? How do you know?
(b) Express the joint PMF of X and Y using a table.

$$
S_{y}=\{0,1\}
$$

(c) Are X and Y independent? Why or why not?
(d) Are X and Y uncorrelated? Why or why not?

$$
p_{x}(x)=1 / 3 \text { when }
$$

Note: Full credit will only be given for a complete answer that includes the correct reason and $x \in S_{x}$ supporting evidence.
a) X is discrete, because curly braces
b)

y^{x}	-1	0	1
0	0	$1 / 3$	0
1	$1 / 3$	0	$1 / 3$

$$
P_{y}(y)=\left\{\begin{array}{cl}
1 / 3 & y=0 \\
2 / 3 & y=1 \\
0 & \text { else }
\end{array}\right.
$$

c) Need to have $p_{x y}(x, y)=p_{x}(x) p_{y}(y)$ for all x and y but, for example, $P_{x y}(0,1)=0$ but

$$
p_{x}(0) p_{y}(1)=(1 / 3)(2 / 3)=\frac{2}{9}
$$

so No they are not. independent
d) $E(x)=0$, so

$$
=0
$$

xvalue Y value
so Yes, X and Y are uncorrelated ${ }^{\circ}$

Problem 22. (15 Points)
Suppose X and Y are two random variables, with means $m_{X}=1$ and $m_{Y}=-3$, and variances $\sigma_{X}^{2}=2$ and $\sigma_{Y}^{2}=4$, respectively. Suppose we also know that the covariance between X and Y is $\operatorname{COV}(X, Y)=1 / 2$.

Find the mean and variance of Z when $Z=3 X+Y$.

$$
\begin{aligned}
& E(z)=E(3 X+Y)=3 E(x)+E(y) \\
& =3.1+-3=0 \\
& \operatorname{Var}(z)=\operatorname{Var}(3 x+y) \\
& =9 \operatorname{var}(x)+\operatorname{Var}(y)+2 \operatorname{cov}(3 x, y) \\
& =9 \cdot 2+4+2 \cdot \frac{1}{2} \cdot 3=25 \\
& \text { Problem 23. (25 Points) } \\
& \text { Let } X \text { be uniform on }[-1,1] \text {. Let } Y=X^{n} \text {. Find } \operatorname{COV}(X, Y) \text {. } \\
& \text { Hint to save some computation: use the fact that } f_{X}(x) \text { is even. }
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}(x) \text { is even, so } E(x)=0 \text {. } \\
& \begin{array}{l}
\operatorname{cov}(x, y)=E(x y)=E\left(x x^{n}\right)=E\left(x^{n+1}\right) \\
=\int_{-1}^{1} x^{n+1} \frac{1}{2} d x=\left.\frac{x^{n+2}}{2(n+2)}\right|_{-1} ^{1}= \begin{cases}\frac{1}{2(n+2)}-\frac{1}{2(n+2)} & \text { if } n \\
\text { even } \\
\frac{1}{2(n+2)}-\frac{(-1)}{2(n+2)} & \text { if } n \\
\text { odd }\end{cases} \\
\operatorname{cov}(x, y)= \begin{cases}0 & \text { never } \\
\frac{1}{n+2} & \text { node } \\
21\end{cases}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cov}(x, y)=E(x y)-E(x) E(y)
\end{aligned}
$$

Problem 24. (10 POINTS)
Suppose X is a RV with zero mean and variance 1, and Y is a RV with mean 1 and variance 4, and suppose the correlation coefficient between X and Y is $1 / 2$. Find $\operatorname{Var}(X+Y)$.
Know: $E(x)=0 \quad \operatorname{Var}(x)=1 \quad E(y)=1 \quad \operatorname{Var}(y)=4$

$$
\begin{aligned}
& \rho_{x y}=\frac{1}{2}=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{Var}(x)} \sqrt{\operatorname{Vard}}(} \quad \text { so } \frac{1}{2}=\frac{\operatorname{Cov}(x, y)}{1 \cdot 2} \\
& \operatorname{cov}(x, y)=1=E(x y)-E(x) E(y)=E(x y) \text { since } E(x)=0
\end{aligned}
$$

want: $\operatorname{Var}(x+y)=\operatorname{VAR}(x)+\operatorname{VAR}(y)+2 \operatorname{cov}(x, y)$

$$
=1+4+2(1)=7
$$

Problem 25. (10 Points)
Suppose X and Y are two random variables with $E(X)=E(Y)=0$, and $V A R(X)=1$, and suppose we know X is independent from $X+Y$. What is the covariance between X and Y ?
want: $\operatorname{cov}(x, y)=E(x y)-E(x) E(y)=E(x y)$ since
Know: $E(x(x+y))=E(x) E(x+y)$

$$
E(x)=0
$$

because x and $x+y$ are independent
So

$$
\begin{aligned}
E\left(x^{2}+x y\right) & =\frac{E(x)}{2} E(x+y) \\
=E\left(x^{2}\right)+E(x y) & =0
\end{aligned}
$$

And since $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=1$ from the pwotlem statement

$$
E\left(x^{2}\right)=1 \text { and } E(x y)=-E\left(x^{2}\right)=[-1
$$

covariance between

Problem 26. (Multiple choice) Two RVs are uncorrelated.

$$
\text { Uncorrelated means } p_{x y}=0
$$

(a) The correlation is always greater than 0 . Uncorrelated means $p_{x y}=0$
(b) The correlation is always less than 0 .
(c) The correlation is always equal to 0 .

$$
\begin{aligned}
& \text { or } \operatorname{cov}(x, y)=0 \\
\Rightarrow & E(x y)=E(x) E(y)
\end{aligned}
$$

(d) None of the above.

Problem 27. (Multiple choice)
If two RVs are positively correlated, then
(a) $E(X Y)>0$.
See above
(b) $E(X Y)<0$.
(c) $E(X Y)=0$.
(d) $E(X Y)=E(X) E(Y)$.

Problem 31.
Let $Y=X+30$ and $Z=3 X-4 . \quad X$ is a uniform RV on $[-1,2]$. Find $\mathrm{E}(\mathrm{Y}), \mathrm{E}(\mathrm{Z}), \operatorname{VAR}(\mathrm{Y})$, $\operatorname{VAR}(\mathrm{Z}), \operatorname{COV}(\mathrm{X}, \mathrm{Z})$, and $\rho_{Y Z}$.

$$
\begin{aligned}
& f_{k}(x)= \begin{cases}\frac{1}{3} & \text { when }-1 \leq x \leq 2 \\
0 & \text { else }\end{cases} \\
& \text { so } \quad E(x)=\frac{1}{2} \\
& \operatorname{Var}(x)=\frac{3^{2}}{12}=\frac{3}{4} \\
& E\left(x^{2}\right)=\operatorname{Var}(x)+E(x)^{2} \\
& =\frac{3}{4}+\frac{1}{4}=1 \\
& E(Y)=E(x+30)=30 \frac{1}{2} \\
& E(z)=E(3 x-4)=3\left(\frac{1}{2}\right)-4=-\frac{5}{2} \\
& \begin{aligned}
\operatorname{Var}(y) & =E\left(y^{2}\right)-E(y)^{2} \\
& =E\left(x^{2}+60 x+900\right)-(30.5)^{2}=E\left(x^{2}\right)+60\left(\frac{1}{2}\right)
\end{aligned} \\
& +900-(30.5)^{2} \\
& =1+30+900-930,25=3 / 4 \\
& \text { (or, much easier, } \operatorname{Var}(y)=\operatorname{Var}(x+30)=\operatorname{Var}(x)=3 / 4 \text {) } \\
& \operatorname{Var}(z)=\operatorname{Var}(3 x-4)=9 \operatorname{Var}(x)=27 / 4 \\
& \operatorname{Cov}(x, z)=E(x z)-E(x) E(z)=E\left(3 x^{2}\right)-4 E(x)-\frac{1}{2}\left(-\frac{5}{2}\right) \\
& \ldots=9 / 4
\end{aligned}
$$

$P_{x z}=\frac{9 / 4}{\sqrt{3 / 4} \sqrt{27 / 4}}=1 \quad\binom{$ This is not surprising, because }{z is a linear function of $x}$

$$
\operatorname{cov}(y, t)=\operatorname{cov}(x+30,3 x-4)=\operatorname{cov}(x, 3 x)=3 \operatorname{var}(x)=9 / 4 .
$$

$$
P_{y z}=1 \text { also }
$$

Problem 32. (5 Points)
Let X, Y, and Z be random variables, where X and Y are uncorrelated. The means of the RVs are $E(X)=1, E(Y)=2$, and $E(Z)=-1$, and $E(X Z)=5$.

What is $\operatorname{COV}(X, Y+2 Z)$?

$$
\begin{array}{rlr}
E(x)=1 & E(x y)-E(x) E(y)=0 \\
E(y)=2 & \text { so } E(x y)=(1)(2)=2 \\
E(z)=-1 & \text { and } E(x z)=5 . \\
\operatorname{Cov}(x, y+2 z)=E(x(y+2 z))-E(x) E(y+2 z) \\
=E(x y)+E(2 x z)-E(x)(E(y)+2 E(z)) \\
= & 2+2(5)-1(2+2(-1)) \\
= & 2+10-2+2=12
\end{array}
$$

