
ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Instructor: Prof. A. R. Reibman

Past Exam Questions
(Fall 2015, Spring 2016, Fall 2016, Fall 2017)

Chapter 5 and beyond

Reibman
(November 2018)

These form a collection of problems that have appeared in either Prof. Reibman’s real exams or
“sample exams.” These can all be solved by applying the material we covered in class that appears
in Chapter 5, 7, 9, and 10 in our textbook.

I will post the last pages of the final – with the formulas that you’ll have available to you –
separately.


































































































































partial solution



Problem 1. (Yes/No: 2 points)
Consider a joint CDF FX,Y (x, y). Is it always true that FX,Y (3, 2)  FX,Y (4, 3)?

Problem 2. (Yes/No: 2 points)
Consider a joint CDF FX,Y (x, y). Is it always true that FX,Y (83, 84) < FX,Y (84, 85)?

Problem 3. (Yes/No: 2 points)
Consider a joint CDF FX,Y (x, y). Is it always true that limy!1 FX,Y (5, y) = 1?

2


































































































































Yes
No
No

2 could be equal
3 him Fxy 5 y Fx 15

y 00



Problem 4.
Random variables X and Y have the joint PDF

fX,Y (x, y) =

⇢
1/2 for 1  x  y  3
0 otherwise

(a) Sketch the region of nonzero probability

(b) What is P (X > 2)?

(c) What is fX(x)?

(d) What is E(X)? E(Y )?

(e) Find COV (X,Y )
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Problem 5. (20 points)
Given the Joint PDF

fX,Y (x, y) =

⇢
c(2� y) for 0 < x < 4 and 0 < y < 1
0 otherwise

(a) What is the value of c?

(b) Find the marginal PDF of X, fX(x), and the marginal PDF of Y , fY (y).

(c) Are X and Y independent? Explain why or why not.

(d) What is P (X + Y < 2)? (Hint: you may find it helpful to draw a picture.)
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Problem 6. (Multiple choice: 5 points)
Let X and Y be continuous random variables with joint density function

fX,Y (x, y) =

⇢
15y for x2 < y < x
0 otherwise

Which represents the marginal density of Y , fY (y)?
(Hint, draw a clear picture and you may get partial credit.)

(a)

fY (y) =

⇢
15y for 0 < y < 1
0 otherwise

(b)

fY (y) =

⇢
15y2/2 for x2 < y < x
0 otherwise

(c)

fY (y) =

⇢
15y2/2 for 0 < y < 1
0 otherwise

(d)

fY (y) =

⇢
15y3/2(1� y1/2) for 0  y  1
0 otherwise

(e)

fY (y) =

⇢
15y3/2(1� y1/2) for x2 < y < x
0 otherwise
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Problem 7. (25 points ((a) is 7 points; (b) is 8 points; (c) is 10 points))
Let X be a discrete RV with sample space SX = {1, 4}, each equally likely. Given that we know
X = x, a second RV Y is exponentially distributed with mean 1/x.

(a) What is the conditional pdf of Y given X?

(b) What is the marginal pdf of Y?

(c) Find E(Y ).
(Hint: it will be faster to use the theorem of total expectations, but you may solve it any way
you wish.)
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Problem 8. (15 points)
Let

FX.Y (x, y) =

8
<

:

x(1� e�2y)/2 for 0  y and 0  x  2
(1� e�2y) for 0  y and 2  x
0 otherwise

(a) Use FX,Y (x, y) to compute the probability that P (1 < X  2, Y  3).

(b) Find fX(x).

(c) What is the probability that P (X  3)
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Problem 9. (25 points)
Let

fX,Y (x, y) =

8
<

:

c for 0  x  2 and 0  y  2
2c for � 1  x  0 and � 1  y  0
0 otherwise

(a) Sketch the region of support for X and Y .

(b) Find c.

(c) Find fY (y|X = 1), the conditional PDF of Y given X = 1.

(d) Find fX(x).
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Problem 13.
X and Y have joint PDF

fX,Y (x, y) =

⇢
k for 0 < y  x  1
0 otherwise

where k is a constant.

(a) Find the marginal pdf’s of X and Y (you don’t have to find k yet).

(b) Find k.

(c) Find P (0 < X < 1/2; 0 < Y < 1/2).

(d) Find the conditional pdf’s fY (y|x) and fX(x|y).

(e) Compute the conditional means E(Y |x) and E(X|y).
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Problem 20. (20 points)

Let X and Y be random variables that have the joint pdf

fX,Y (x, y) = c(x+ y), for 0  x  1, 0  y  1

(a) Find c.

(b) Find the marginal PDFs of both X and of Y .

(c) What is P (X > Y |X < 1/2)?

(d) Find fY (y|x).

19

12 A X Y
pictureforparte

J

8hamregion of support

Y

11 1 2

a know I off fxylx.gldx dy fo f dxty dydy
fo c xy E lo dy So x b dx

of Eto al's E c

b fx x of f ylx y dy Jo xty dy XyMEI

f lx XtYzwhenoexe

X and yareinterchangeabtyfylyj y.tl zwhenoEy

c use Bayes Rule pix yl x sik P X aka X Y
12

numerator fo fo lxtyldxdy f xyl dx
fo 312dg Zaid 1

16
denominator so fxCx dx 318 so answer Hoo 461
d fylylx f

y
D he 2 whenoexT



Problem 21. (15 points)

Suppose X and Y are two random variables with Y = X2. X is uniformly distributed with
SX = {�1, 0, 1}.

(a) Is X a discrete or continuous random variable? How do you know?

(b) Express the joint PMF of X and Y using a table.

(c) Are X and Y independent? Why or why not?

(d) Are X and Y uncorrelated? Why or why not?

Note: Full credit will only be given for a complete answer that includes the correct reason and
supporting evidence.
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Problem 22. (15 points)
Suppose X and Y are two random variables, with means mX = 1 and mY = �3, and variances
�2
X = 2 and �2

Y = 4, respectively. Suppose we also know that the covariance between X and Y is
COV(X,Y ) = 1/2.

Find the mean and variance of Z when Z = 3X + Y .

Problem 23. (25 points)
Let X be uniform on [�1, 1]. Let Y = Xn. Find COV (X,Y ).

Hint to save some computation: use the fact that fX(x) is even.
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Problem 24. (10 points)

Suppose X is a RV with zero mean and variance 1, and Y is a RV with mean 1 and variance 4,
and suppose the correlation coe�cient between X and Y is 1/2. Find V ar(X + Y ).

Problem 25. (10 points)

Suppose X and Y are two random variables with E(X) = E(Y ) = 0, and V AR(X) = 1, and
suppose we know X is independent from X + Y . What is the covariance between X and Y ?

22

Know EU 0 Varlx ELY I Varly 4

p y tz w y
so I E

Cov X 4 L ELXY EK ELY ELXY since ELX o

Want Var X14 VARIX VARLY 2cov x y

I 14 24 D
see

sawant coV X Y Etsy E ELY Etsy since
E X 0

Know E Xlxty EINE Xty
because X and Xty are independent

50 EL x XY EI ECXty
E XZ E XY o

zero

And since var X ELM E x _I from the problem
statement

E XY L and ELXY Ela

covariance between
X and Y



Problem 26. (Multiple choice)
Two RVs are uncorrelated.

(a) The correlation is always greater than 0.

(b) The correlation is always less than 0.

(c) The correlation is always equal to 0.

(d) None of the above.

Problem 27. (Multiple choice)
If two RVs are positively correlated, then

(a) E(XY ) > 0.

(b) E(XY ) < 0.

(c) E(XY ) = 0.

(d) E(XY ) = E(X)E(Y ).

(e) None of the above.

Problem 28. (Yes/No: 4 points)

If the correlation between two random variables is zero, then their correlation coe�cient must also
be zero.

Problem 29. (Yes/No: 4 points)

If X and Y are independent random variables, then V AR(3X + 2Y + 1) = V AR(3X � 2Y + 3).

Problem 30. (Multiple choice: 5 points)
Let Z = 3X � Y � 5, where X and Y are independent random variables with V ar(X) = 1 and
V ar(Y ) = 2. What is V ar(Z)?

(a) 4

(b) 7

(c) 11

(d) 16

(e) None of the above.
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Problem 31.
Let Y = X + 30 and Z = 3X � 4. X is a uniform RV on [�1, 2]. Find E(Y), E(Z), VAR(Y),
VAR(Z), COV(X,Z), and ⇢Y Z .
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Problem 32. (5 points)

Let X, Y , and Z be random variables, where X and Y are uncorrelated. The means of the RVs
are E(X) = 1, E(Y ) = 2, and E(Z) = �1, and E(XZ) = 5.

What is COV (X,Y + 2Z)?
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