Publications
Please see my google scholar profile the most up to date list.
[1]
S. S. Cheema et al., “Enhanced ferroelectricity in ultrathin films grown directly on silicon,” Nature, vol. 580, no. 7804, pp. 478–482, 2020.
[2]
G. Shaw, J. Taylor, R. Wagner, and F. Guzman, Optomechanical reference. 2019.
[3]
M. Lorenz, R. Wagner, R. Proksch, and O. S. Ovchinnikova, “Photoinduced Thermal Desorption on an Atomic Force Microscope Platform Coupled with Mass Spectrometry for Multimodal Imaging,” Microscopy and Microanalysis, vol. 25, no. S2, pp. 1064–1065, 2019.
[4]
P. N. Ciesielski et al., “Nanomechanics of cellulose deformation reveal molecular defects that facilitate natural deconstruction,” Proceedings of the National Academy of Sciences, vol. 116, no. 20, pp. 9825–9830, 2019.
[5]
T. J. Woehl, R. B. Wagner, J. Killgore, and R. Keller, Electron vibrometer and determining displacement of a cantilever. Google Patents, 2018.
[6]
R. Wagner, F. Guzman, and G. Shaw, “Towards a Photonic Quantum Standard for Mass and Force,” in 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), 2018, pp. 1–2.
[7]
R. Wagner, F. Guzman, A. Chijioke, G. K. Gulati, M. Keller, and G. Shaw, “Direct measurement of radiation pressure and circulating power inside a passive optical cavity,” Optics Express, vol. 26, no. 18, pp. 23492–23506, 2018.
[8]
R. Wagner and J. Killgore, “Reconstructing the distributed force on an atomic force microscope cantilever,” Nanotechnology, vol. 28, no. 10, p. 104002, 2017.
[9]
R. Wagner, R. J. Moon, and A. Raman, “Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy,” Cellulose, vol. 23, no. 2, pp. 1031–1041, 2016.
[10]
R. Wagner, T. Woehl, R. Keller, and J. Killgore, “Detection of atomic force microscopy cantilever displacement with a transmitted electron beam,” Applied Physics Letters, vol. 109, no. 4, p. 043111, 2016.
[11]
R. Wagner, J. P. Killgore, R. C. Tung, A. Raman, and D. C. Hurley, “Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements,” Nanotechnology, vol. 26, no. 4, p. 045701, 2015.
[12]
R. Wagner and J. P. Killgore, “Photothermally excited force modulation microscopy for broadband nanomechanical property measurements,” Applied Physics Letters, vol. 107, no. 20, p. 203111, 2015.
[13]
R. B. Wagner, “Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials,” PhD Thesis, Purdue University, 2014.
[14]
R. Wagner, A. Raman, and R. Proksch, “Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces,” Applied Physics Letters, vol. 103, no. 26, p. 263102, 2013.
[15]
R. Wagner, B. R. Pittendrigh, and A. Raman, “Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy,” Applied Surface Science, vol. 259, pp. 225–230, 2012.
[16]
R. Wagner, R. Moon, J. Pratt, G. Shaw, and A. Raman, “Uncertainty quantification in nanomechanical measurements using the atomic force microscope,” Nanotechnology, vol. 22, no. 45, p. 455703, 2011.
[17]
M. T. Postek et al., “Development of the metrology and imaging of cellulose nanocrystals,” Measurement Science and Technology, vol. 22, no. 2, p. 024005, 2011.
[18]
X. Wu, R. Wagner, A. Raman, R. Moon, A. Martini, and B. N. Center, “Elastic deformation mechanics of cellulose nanocrystals,” TMS (The minerals, metals & materials society) supplemental proceedings, vol. 2, pp. 689–696, 2010.
[19]
R. Wagner, A. Raman, R. Moon, and others, “Transverse elasticity of cellulose nanocrystals via atomic force microscopy,” Cellulose, vol. 7, p. 27, 2010.
[20]
A. Martini, X. E. Wu, R. Wagner, A. Raman, and R. J. Moon, “Anisotropic elasticity of crystalline cellulose: Atomistic modeling & experiments,” in International Conference on Nanotechnology for the Forest Products Industry 2010, 2010, pp. 292–294.