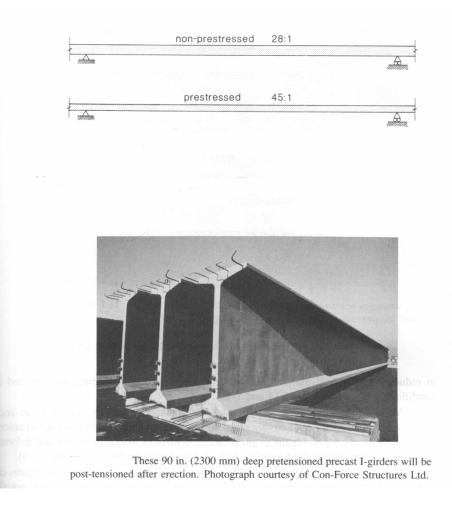
Introduction to Prestressing CE 572

Purdue University School of Civil Engineering

Julio Ramirez

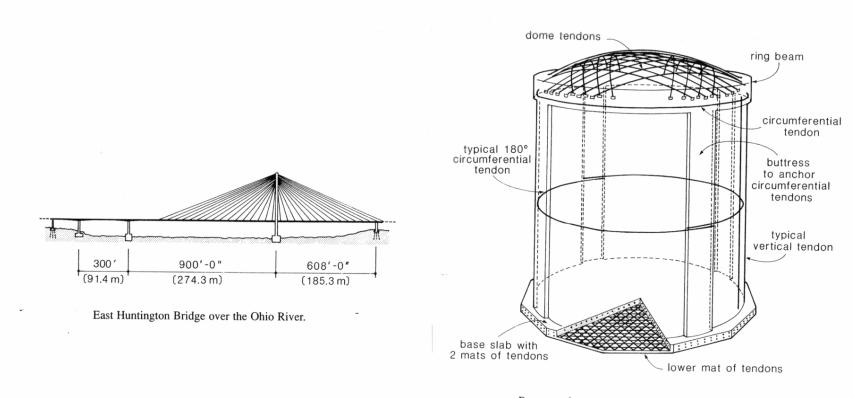
Definition of Prestressing

It consists of preloading the structure before application of design loads in such a way so as to improve its general performance.


Objectives of Prestressing

- Control or eliminate tensile stresses in the concrete (cracking) at least up to service load levels.
- Control or eliminate deflection at some specific load level.
- Allow the use of high strength steel and concrete.

Net Result of Prestressing

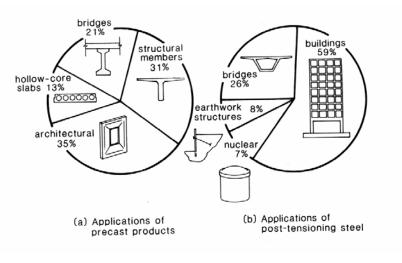

- Improved performance of concrete in "ordinary" design situations (compared to R/C).
- Extended range of application of structural concrete (longer spans).
- Innovative forms of structures.

Extended Range of Application

CE572/Spring 04/JAR

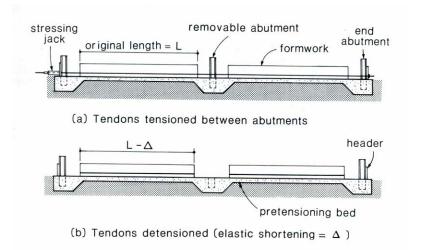
Examples of Structures

Prestressed concrete containment structure for nuclear power plant.


CE572/Spring 04/JAR

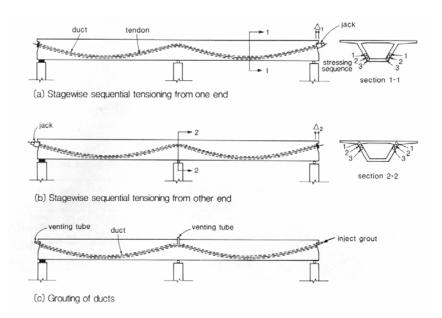
Partial Prestressing

- Intermediate state, in which tension and usually flexure cracking is allowed at full service load level. Some advantages are:
 - Prevents excessive camber at more typical loads less than full service loads.
 - Reduced prestressing force (less \$\$\$) compared to full prestressing (zero tensile stresses at full service load).


Applications of Prestressed Concrete in the US and Canada – Figure 1

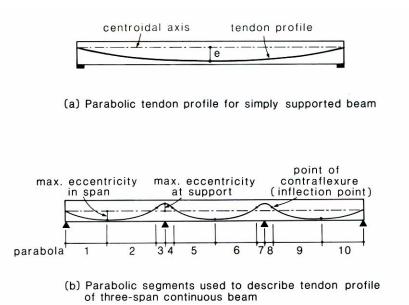
About 200,000 tons of prestressing steel used in US/Canada each year (~ ¼ of the total world consumption)

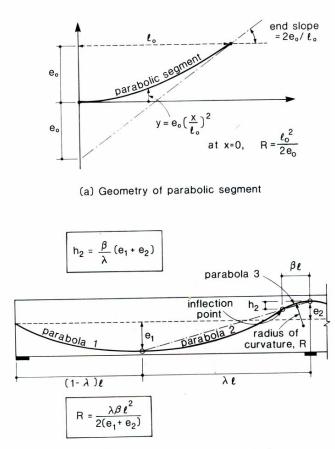
Prestressing Methods


Pretensioning: suited for mass production.

*Video (PCI)

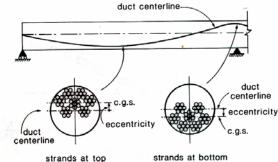
Prestressing Methods


Post-Tensioning: jacking against the member and the eccentricity is easily varied along the length of the member.


Post-Tensioning Sequence

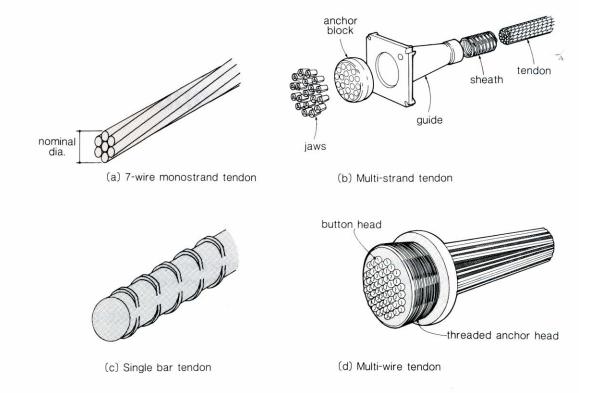
- Place reinforcing cage and post-tensioning ducts inside the formwork.
- After casting and curing of the concrete, the tendons are tensioned and anchored with special jacks that react against the member.
- Unless unbonded tendons are being used, the duct is then grouted to complete the post-tensioning operation.
- Slides (PTI)------

Profiles of Post-Tensioned Tendons

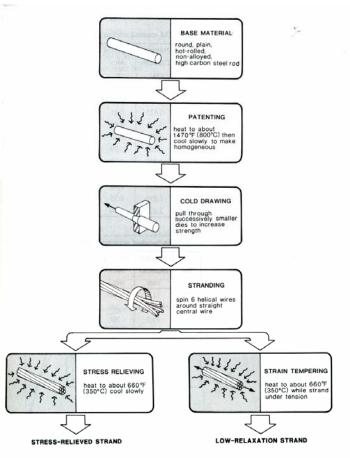


Geometry of Parabolic Profiles

(b) Parabolic segments with compatible slopes


Location and Eccentricity of Tendon in Duct After Stressing

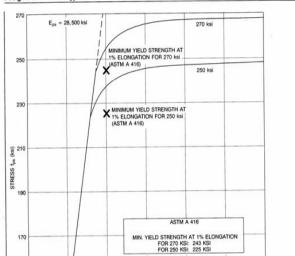
of duct


tendon size	sheath diameter in. (mm)	eccentricity in. (mm)	
no. of 1/2 in. dia. (13mm) strands			
3	1.25 (32)	0.28 (7)	
4	1.63 (41)	0.28 (7)	
7	2.00 (51)	0.32 (8)	
12	2.50 (64)	0.43 (11)	
19	3.13 (80)	0.51 (13)	
22	3.38 (86)	0.47 (12)	
31	4.00 (102)	0.55 (14)	
55	5.50 (140)	0.90 (23)	
no, of 0.6 in. dia. (15mm) strands	al frequencia and		
3	1.50 (38)	0.20 (5)	
4	2.00 (38)	0.20 (5)	
7	2.25 (57)	0.40 (10)	
12	3.00 (76)	0.50 (13)	
19	3.75 (95)	0.70 (18)	
31	5.00 (127)	0.90 (23)	
55	6.50 (165)	1.20 (30)	

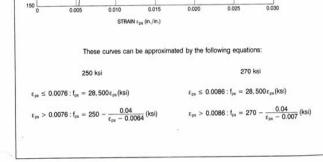
Materials: Types of Prestressing Steel

Production of Seven Wire Strand

Low relaxation versus stress-relieved


MATERIAL PROPERTIES PRESTRESSING STEEL

Nominal Diameter, in. Area, sq. in.	-		Bars, fpu = 14			
Area, sq. in.	34	76	1	1%	1%	136
	0.442	0.601	0.785	0.994	1.227	1.485
Weight, plf	1.50	2.04	2.67	3.38	4.17	5.05
0.7 f _{pu} A _{ps} , kips	44.9	61.0	79.7	100.9	124.5	150.7
0.8 f _{pu} A _{ps} , kips	51.3	69.7	91.0	115.3	142.3	172.2
f _{pu} A _{ps} , kips	64.1	87,1	113.8	144.1	177.9	215.3
Nominal Diameter, in.	Plai 34	n Prestressing	Bars, f _{pu} = 16 1	0 ksi+ 1%	1%	136
Nominal Diameter, in.	34	34	1	1%	134	136
Area, sq. in.	0.442	0.601	0.785	0.994	1.227	1.485
Weight, plf	1.50	2.04	2.67	3.38	4.17	5.05
	-					
0.7 f _{pu} A _{ps} , kips	49.5	67.3	87.9	111.3	137.4	166.3
0.7 f _{pu} A _{ps} , kips	49.5 56.6	67.3 77.0	87.9	111.3	137.4 157.0	
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips						166.3 190.1 237.6
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips	56.6	77.0 96.2	100.5	127.2 159.0	157.0	190.1
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips	56.6	77.0 96.2 Deformed Pre	100.5 125.6	127.2 159.0	157.0 196.3	190.1
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips Nominal Diameter, in.	56.6 70.7	77.0 96.2 Deformed Pre	100.5 125.6 stressing Barr 1	127.2 159.0 1%	157.0 196.3 134	190.1 237.6 136
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips Nominal Diameter, in. Area, sq. in. Weight, plf	56.6 70.7	77.0 96.2 Deformed Pro 1 0.85	100.5 125.6 stressing Barr 1 0.85	127.2 159.0 11/4 1.25	157.0 196.3 1% 1.25	190. 237.4 136 1.58 5.56
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips Nominal Diameter, in. Area, sq. in.	56.6 70.7 % 0.28 0.98	77.0 96.2 Deformed Pre 1 0.85 3.01	100.5 125.6 stressing Bars 1 0.85 3.01	127.2 159.0 11/4 1.25 4.39	157.0 196.3 11/4 1.25 4.39	190. 237.4 136 1.58
0.7 f _{pu} A _{ps} , kips 0.8 f _{pu} A _{ps} , kips f _{pu} A _{ps} , kips Nominal Diameter, in. Area, sq. in. Weight, pif UII. strength, f _{pu} , ksi	56.6 70.7 1 4 0.28 0.98 157	77.0 96.2 Deformed Pre 1 0.85 3.01 150	100.5 125.6 stressing Barr 1 0.85 3.01 160*	127.2 159.0 11% 1.25 4.39 150	157.0 196.3 11/4 1.25 4.39 160*	190. 237.4 134 1.58 5.56 150


PCI Design Handbook/Fifth Edition

11-21

MATERIAL PROPERTIES PRESTRESSING STEEL

Design Aid 11.2.5 Typical stress-strain curve, 7-wire low-relaxation prestressing strand

11-22 PCI Design Handbook/Fifth Edition

CE572/Spring 04/JAR

Concrete

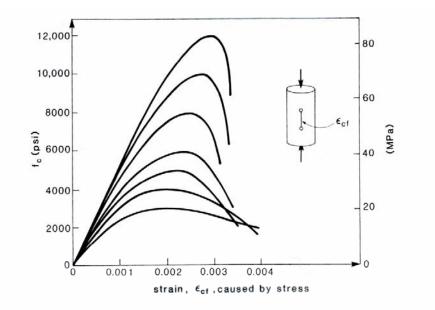
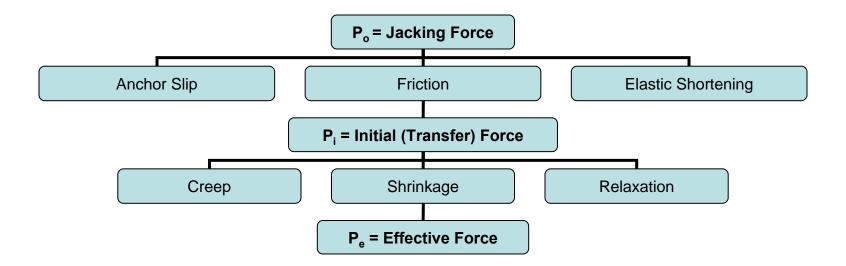


Table 3-3 Compressive stress-strain coefficients for normal-weight concrete.

3000	3500	4000	5000	6000	8000	10,000	12,000	16,000
(20.7)	(24.1)	(27.6)	(34.5)	(41.4)	(55.2)	(69.0)	(82.7)	(110.3)
3191	3366	3530	3828	4098	4578	5000	5382	6060
(22,000)	(23 200)	(24 300)	(26 400)	(28 300)	(31 600)	(34 500)	(37 100)	(41 800)
1.88	1.91	1.94	2.03	2.13	2.33	2.53	2.71	3.07
	2.20	2.40	2.80	3.20	4.00	4.80	5.60	7.20
	1.06	1.11	1.23	1.34	1.56	1.78	2.00	2.45
	(20.7) 3191	(20.7) (24.1) 3191 3366 (22 000) (23 200) 1.88 1.91 2.00 2.20	(20.7) (24.1) (27.6) 3191 3366 3530 (22 000) (23 200) (24 300) 1.88 1.91 1.94 2.00 2.20 2.40	(20.7) (24.1) (27.6) (34.5) 3191 3366 3530 3828 (22 000) (23 200) (24 300) (26 400) 1.88 1.91 1.94 2.03 2.00 2.20 2.40 2.80	3000 2000 (24.1) (27.6) (34.5) (41.4) 3191 3366 3530 3828 4098 (22 000) (23 200) (24 300) (26 400) (28 300) 1.88 1.91 1.94 2.03 2.13 2.00 2.20 2.40 2.80 3.20	3000 3000 1000 <th< td=""><td>3000 3500 1000 <th< td=""><td>3000 3500 4000 5000 6000 <th< td=""></th<></td></th<></td></th<>	3000 3500 1000 <th< td=""><td>3000 3500 4000 5000 6000 <th< td=""></th<></td></th<>	3000 3500 4000 5000 6000 <th< td=""></th<>


Hognestad Parabola

$$fc(\varepsilon) := \left[fcmax \cdot \left[\left(2 \cdot \frac{\varepsilon}{\varepsilon 0} \right) - \left(\frac{\varepsilon}{\varepsilon 0} \right)^2 \right] \right] \qquad Ec := 57000 \frac{\sqrt[2]{(fcmax)}}{1000}$$

Calculate ε_o (strain corresponding to peak stress, fcmax) using the secant Modulus of Elasticity at 0.5fcmax. Thus, fit The Hognestad expression through a point corresponding to 0.5fcmax and 0.5fcmax/Ec.

CE572/Spring 04/JAR

Prestress Force Levels

