
## **Wood Connections**

CE479

## Types of Connections

- Yield Limit Model- For Dowel Type
  Connections (first introduced in 1991 NDS)
  Laterally loaded connections
  relying on metal to wood bearing
  for transfer of lateral loads (shear
  connections). Load applied
  perpendicular to the length of the
  fastener.
  - Single shear
  - Double shear



 Z = nominal design value for single fastener subjected to lateral shear load

### Types of Connections

 Connections relying on friction or mechanical interfaces for transfer of axial (withdrawal) loads. These are loads applie parallel to the length of the fastener.

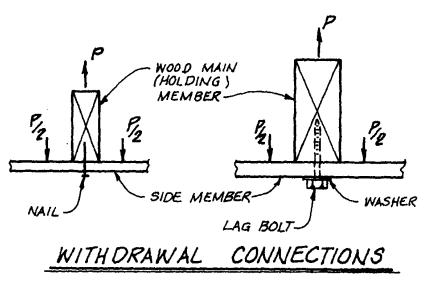



Figure 11.2s Nail and lag bolt connections subject to withdrawal loading.

 W = nominal design value for single fastener subjected to withdrawal load

## Types of Fasteners

- Nails
- Bolts
- Lag Bolts or lag screws
- Split ring and shear plate connectors

## Adjusted Value: Z'

- Shear Connections: the term nominal shear strength refers to the basic load capacity as defined in the NDS (Chapter 11)- Table 11.3.1A. However, these values apply to a given set of conditions and need to be adjusted to fit the actual conditions.
- Z' = Z x adjustment factors (Table 10.3.1 NDS-01)

# Failure Modes: Appendix I NDS-01

Im and Is: bearing modes

II: pivoting of the fastener with some bearing

IIIm and IIIs: fastener yield and some wood bearing failure

IV: fastener yielding at two plastic hinge points per shear plane and some localized wood crushing

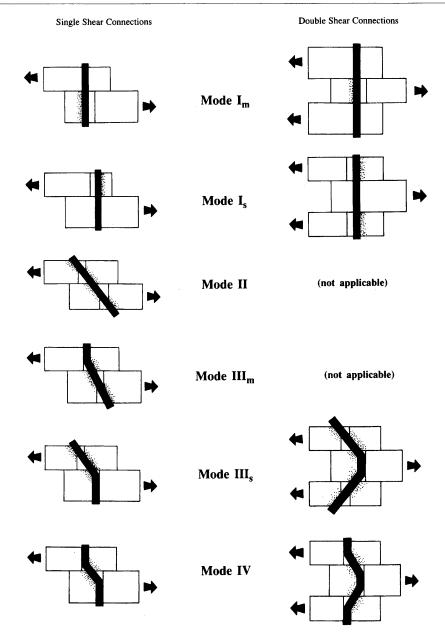



Figure I 1 (Non-mandatory) Connection Yield Modes

AMERICAN FOREST & PAPER ASSOCIATION

## Design Equations

| al | ble 11.3.1A      | Yield Limit Equations                                       |          |                                                              |             |
|----|------------------|-------------------------------------------------------------|----------|--------------------------------------------------------------|-------------|
|    | Yield Mode       | Single Shear                                                |          | Double Shear                                                 |             |
|    | I <sub>m</sub>   | $Z = \frac{D \ell_{m} F_{em}}{R_d}$                         | (11.3-1) | $Z = \frac{D \ell_m F_{em}}{R_d}$                            | (11.3-7)    |
|    | I <sub>s</sub>   | $Z = \frac{D \ell_i F_{es}}{R_d}$                           | (11.3-2) | $Z = \frac{2D  \ell_s F_{es}}{R_d}$                          | (11.3-8)    |
|    | II               | $Z = \frac{k_1 D  \ell_s F_{es}}{R_d}$                      | (11.3-3) |                                                              |             |
|    | III <sub>m</sub> | $Z = \frac{k_2 D  \ell_m F_{em}}{(1 + 2R_e) R_d}$           | (11.3-4) |                                                              |             |
|    | III <sub>s</sub> | $Z = \frac{k_3 D \ell_p F_{em}}{(2 + R_e) R_d}$             | (11.3-5) | $Z = \frac{2k_3D\ell_sF_{em}}{(2+R_e)R_d}$                   | (11.3-9)    |
|    | IV               | $Z = \frac{D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}}$ | (11.3-6) | $Z = \frac{2D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}}$ | (11.3 - 10) |

Note:

### Constants and Defenitions

Note:

$$k_1 = \frac{\sqrt{R_e + 2R_e^2(1 + R_t + R_t^2) + R_t^2R_e^3} - R_e(1 + R_t)}{(1 + R_e)}$$

$$k_2 = -1 + \sqrt{2(1 + R_e) + \frac{2F_{yb}(1 + 2R_e)D^2}{3F_{em}\ell_m^2}}$$

$$k_3 = -1 + \sqrt{\frac{2(1+R_e)}{R_e} + \frac{2F_{yb}(2+R_e)D^2}{3F_{em}\ell_s^2}}$$

= diameter, in. (see 11.3.6)

 $F_{yb}$  = dowel bending yield strength, psi

 $R_d$  = reduction term (see Table 11.3.1B)

 $R_{e} = F_{em}/F_{es}$   $R_{t} = \ell_{m}/\ell_{s}$ 

 $\ell_{\rm m}$  = main member dowel bearing length, in.  $\ell_{\rm s}$  = side member dowel bearing length, in.

 $F_{em}$  = main member dowel bearing strength, psi (see

Table 11.3.2)

side member dowel bearing strength, psi (see

Table 11.3.2)

**AMERICAN FOREST & PAPER ASSOCIATION** 

## Dowel Bending Yield Strength

#### Table I1 Fastener Bending Yield Strengths, F,

| Fastener Type                                                        | F <sub>yb</sub> (psi) |  |
|----------------------------------------------------------------------|-----------------------|--|
| Bolt, lag screw (with $D \ge 3/8$ "), drift pin (SAE J429            |                       |  |
| Grade 1- $F_v = 36,000 \text{ psi}$ and $F_u = 60,000 \text{ psi}$ ) | 45,000                |  |
| Common, box, or sinker nail, spike, lag screw, wood                  |                       |  |
| screw (low to medium carbon steel)                                   |                       |  |
| $0.099" \le D \le 0.142"$                                            | 100,000               |  |
| $0.142$ " $< D \le 0.177$ "                                          | 90,000                |  |
| $0.177$ " < D $\leq 0.236$ "                                         | 80,000                |  |
| $0.236$ " $< D \le 0.273$ "                                          | 70,000                |  |
| 0.273" < D ≤ 0.344"                                                  | 60,000                |  |
| $0.344$ " < D $\leq 0.375$ "                                         | 45,000                |  |
| Hardened steel nail (medium carbon steel)                            |                       |  |
| $0.120" \le D \le 0.142"$                                            | 130,000               |  |
| $0.142$ " $< D \le 0.192$ "                                          | 115,000               |  |
| $0.192$ " $< D \le 0.207$ "                                          | 100,000               |  |