Exact and numerically stable closed-form expressions for potential coefficients of rectangular conductors

Jitesh Jain, Cheng-Kok Koh, and Venkataramanan Balakrishnan
School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285
jjain,chengkok,ragu@ecn.purdue.edu

ABSTRACT
Existing exact closed-form expressions for the scalar mutual and self-potential coefficients for rectangular conductors may be ill-conditioned for certain geometries. We propose new, exact, closed-form expressions for potential coefficients that are much better-conditioned. The basic idea is to express all potential coefficients as weighted sums of mutual and self-potential coefficients of suitably defined virtual plates. Experimental results are presented to demonstrate the improved numerical stability of the new formulas.

1. INTRODUCTION
Capacitance extraction has been a fundamental problem in the modeling and analysis of VLSI interconnects. A number of approaches are available for the extraction of capacitance for a general structure of n conductors [1], [7], [5], [2]. To calculate capacitance, Laplace equations have to be solved numerically over a charge free region, with the conductors providing the boundary conditions. Though there are a number of numerical methods that could be employed for the solution of Laplace equations involved, the usual approach is to use a boundary element technique for solving the integral form of Laplace equations [5], [2]. Here, the conductor surfaces are divided into rectangular panels, and their surface charge density \(\sigma \) is computed by solving the equation

\[
\phi(x) = \int_{\text{surfaces}} G(x, x') \sigma(x') \, da',
\]

where \(x, x' \in R^3 \), \(\phi \) is the known surface potential, and \(G(x, x') \) is Green’s function. Given the surface charge density, \(\sigma \), the total charge on the conductor can be calculated by summing it over the panels that comprise the entire surface. If conductor \(j \) is raised to a unit potential, the partial capacitance between the \(i \)th and \(j \)th conductors, \(C_{ij} \), is simply equal to the charge on conductor \(i \).

The approach presented in [5] is to divide the surface into a large number of panels \(A_i \) so that the charge on each panel can be assumed to be constant. The charge voltage relationship for the panels can then be written as matrix equation of the form \(PQ = V \), where \(V \) is the vector of panel potentials, \(Q \) is the vector of panel charges, and \(P \) is the potential coefficient matrix of the system. The capacitance matrix is now obtained by summing the panel charges. The potential coefficient between panels \(\mathcal{P}_i \) and \(\mathcal{P}_j \) is given by

\[
P_{ij} = \frac{1}{A_j \delta_i} \int_{x_i \in \mathcal{P}_i} \int_{x_j \in \mathcal{P}_j} \frac{1}{4 \pi \varepsilon_0 \| x_i - x_j \|} \, dx_i \, dx_j,
\]

where \(A_j \) and \(\delta_i \) denote the areas of panels \(\mathcal{P}_j \) and \(\mathcal{P}_i \) respectively. In [2], the potential coefficients are approximated by

\[
P_{ij} = \frac{1}{\text{area}(\mathcal{P}_j)} \int_{x_i \in \mathcal{P}_j} \frac{1}{4 \pi \varepsilon_0 \| x - x_i \|} \, dx,'
\]

where \(x' \) is the center of panel \(j \).

For rectangular geometries, the expression in (2) can be simplified to yield explicit formulas [4]. While they are simple to evaluate, these formulas are numerically ill-conditioned, consequently when the separation between the conductor surfaces is large (and yet realistic), the evaluation of the formulas, even with double-precision, leads to erroneous results (see §3 for numerical results).

The numerical ill-conditioning in the formulas is caused by cancellation errors. The same issue arises in the calculation of inductance of rectangular conductors, where it has been observed that the numerical inaccuracies in the evaluation of mutual inductance formulas are much more severe than those with self inductance formulas [8]. Numerically stable formulas for self-inductances were given in [6, 3]. The authors in [8] then derived numerically well conditioned formulas for mutual inductances of parallel conductors by expressing them in terms of self inductances. Our work in spirit takes a similar approach to derive stable expressions for mutual potential coefficients. However, the work here is more involved than deriving inductance formulas. First, in inductance extraction with parallel conductors, the basic problem has the filaments in a parallel orientation. However, with capacitance extraction, the plates can be aligned in three different configurations (see §2). Second, the expressions for self-potential coefficients in [4] suffer from cancellation errors, and must be rewritten to improve their numerical stability.

In this paper we derive the explicit formulas for the expression in (2) for rectangular conductors. We first present formulas for self potential coefficients that are theoretically equivalent to, but numerically more stable than, the ones derived in [4]. We then express the mutual potential between two plates as a weighted sum of self potentials. Numerical results show that our formulas are numerically more stable than those derived in [4].

2. FORMULAS FOR POTENTIALS

2.1 Parallel plates
We first consider the case of two parallel plates, as shown in Figure 1. Without loss of generality, we assume that plate \(i \) is in the \(xy \)-plane. Let \(a_{kl}, k, l \in \{0, 1\} \) denote the four corners of plate \(i \), with \(\{x_k, y_l, 0\} \) being the cartesian coordinates of corner \(a_{kl} \). Let \(b_{kl}, k, l \in \{0, 1\} \) denote the four corners of plate \(j \), with \(\{u_k, v_l, z\} \) being the cartesian coordinates of corner \(b_{kl} \). Let \(A_i \) and \(A_j \) be the areas of plates \(i \) and \(j \) respectively. For this case, equation (2) yields

\[
P_{ij} = \frac{1}{4 \pi \varepsilon_0 A_j A_j} \int_{x_i \in \mathcal{P}_i} \int_{y_i = y_0}^{y_1} \int_{z = 0}^{z_1} \frac{1}{r_{ij}} \, dx_i \, dy_i \, dz,
\]

where \(r_{ij} = \sqrt{(x - u)^2 + (y - v)^2 + z^2} \). The formulas in [4] are es-
sentially simplified forms of this integral.

The approach that we employ relies on the following simple, yet key, observation from calculus [8].

Lemma 1. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) satisfy \(f(x, y) = g(|x - y|) \) for some \(g : \mathbb{R} \to \mathbb{R} \) and for all \(x, y \in \mathbb{R} \). Then,

\[
\int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, u) \, dx \, du = \frac{1}{2} \left(\int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, u) \, du \, dx + \int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x, u) \, dx \, du \right)
\]

\[
- \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, u) \, dx \, du - \int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x, u) \, dx \, du \right)
\]

\[
= \frac{1}{2} \sum_{i,j=0}^{n} (-1)^{i+j+1} \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, u) \, dx \, du.
\]

Lemma 1 states that the integral of a function of two variables \(x \) and \(u \), that is symmetric about the line \(x = u \) over a rectangle, can be expressed as a combination of integrals over four squares.

Using (5) we may rewrite (4) as

\[
P_{ij} = \frac{1}{4\pi \varepsilon_0 A_i A_j} \int_{x_0}^{x_1} \int_{y_0}^{y_1} \left(\frac{-1}{2} \sum_{k,l=0}^{n} (-1)^{k+l+1} \int_{y_k}^{y_l} \int_{x_k}^{x_l} \frac{1}{r_{ij}} \, dx \, dy \right)
\]

\[
= \frac{1}{16\pi \varepsilon_0 A_i A_j} \sum_{k,l,m,n=0} \left((-1)^{k+l+m+n} \int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{x_k}^{x_l} \int_{y_k}^{y_l} \frac{1}{r_{ij}} \, dx \, dy \right)
\]

Thus, the implication of Lemma 1 for the calculation of the potential coefficient \(P_{ij} \) is that \(P_{ij} \) can be expressed as a weighted sum of sixteen integrals. These integrals have interesting physical interpretations, and can be further simplified:

- Consider the case \(z = 0 \), i.e., when plates \(i \) and \(j \) both lie in the \(xy \)-plane. In this case every integral in the formula (6) can be interpreted as the self-potential of a “virtual” rectangular plate of dimensions \(|x_m - u_0| \times |y_k - v_j|\), one such virtual plate is shown in Figure 2.

It is readily shown that in this case, we may further simplify each integral:

\[
I(k, l, m, n) = \int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{x_1}^{x_k} \int_{y_1}^{y_l} \frac{1}{r_{ij}} \, dx \, dy \, dx \, dy = \frac{1}{3} \left(\frac{2}{\ell + \sqrt{\ell^2 + w^2}} \right)
\]

\[
+ 2\sqrt{w} S \left(\frac{\ell}{W} \right) + 2w^2 \ell S \left(\frac{\ell}{W} \right)
\]

(7)

where \(\ell = |x_m - u_0|, w = |y_k - v_j|, \) and \(S(x) = \sinh^{-1}(x) \).

- Next, consider the case \(z \neq 0 \). In this case each integral can be interpreted as the potential coefficient between two parallel plates of dimension \(|x_m - u_0| \times |y_k - v_j|\), with a separation of \(z \). One such set of virtual plates is shown in Figure 3.

It is readily shown that in this case, each integral can be further simplified:

\[
I(k, l, m, n) = \int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{x_1}^{x_k} \int_{y_1}^{y_l} \frac{1}{r_{ij}} \, dx \, dy \, dx \, dy = \frac{1}{3} \left(\frac{2}{\ell + \sqrt{\ell^2 + w^2}} \right)
\]

\[
+ 2\sqrt{w} S \left(\frac{\ell}{W} \right) + 2w^2 \ell S \left(\frac{\ell}{W} \right)
\]

(8)

where \(T(x) = \tan^{-1}(x), S(x) = \sinh^{-1}(x), p = \frac{|y_k - v_j|}{z}, q = \frac{|y_k - v_j|}{z}, r = \frac{\sqrt{p^2 + q^2}}{z} \).

In summary, we have the following new formulas:

\[
P_{ij} = \frac{1}{16\pi \varepsilon_0 A_i A_j} \sum_{k,l,m,n=0} \left((-1)^{k+l+m+n} I(k, l, m, n) \right)
\]

(9)
Figure 3: Virtual plate for corners \(a_{00}\) and \(b_{00}\) of Figure 1 when \(z \neq 0\).

Figure 4: Cells aligned in perpendicular direction.

Figure 5: Virtual plate for corners \(a_{00}\) and \(b_{00}\) of Figure 4.

We note that it is possible that some of the virtual plates have zero area, e.g., when \(x_1 = u_1\). In such cases the corresponding integrals simply drop out of the sum in (9) yielding expressions with fewer than sixteen terms. Finally, while the formulas in (9) appear different from the ones in [4], they evaluate in theory the same quantity. However, we will demonstrate via examples in §3 that the formulas in (9) are much better conditioned numerically than the ones in [4].

2.2 Perpendicular plates

We next consider the second potential coefficient calculation encountered in conductors with rectangular geometries, that of two perpendicular plates, as shown in Figure 4.

Without loss of generality, we assume that plate \(i\) is in the \(xy\)-plane. Let \(a_{ij}, k,l \in \{0,1\}\) denote the four corners of plate \(i\), with \(\{x_k,y_l,0\}\) being the cartesian coordinates of corner \(a_{ij}\). Let \(b_{kl}, k,l \in \{0,1\}\) denote the four corners of plate \(j\), with \(\{u_k,v_l,0\}\) being the cartesian coordinates of corner \(b_{ij}\). Let \(A_i\) and \(A_j\) be the areas of plates \(i\) and \(j\) respectively.

Paralleling the development in §2.1, the formulas in (2) can be simplified to yield

\[
P_{ij} = \frac{1}{4\pi\epsilon_0 A_i A_j} \sum_{k,l=0}^{1} \frac{1}{r_{ij}} \int_{x_k}^{x_l} \int_{y_k}^{y_l} \int_{z_0}^{z_i} 1 \, dx \, dy \, dz, \tag{10}
\]

where \(r_{ij} = \sqrt{(x_k-x_l)^2 + (y_k-y_l)^2 + z_i^2}\).

Using (5) we can rewrite the above equation as

\[
P_{ij} = \frac{1}{8\pi\epsilon_0 A_i A_j} \sum_{k,l=0}^{1} (-1)^{k+l+1} \int_{x_k}^{x_l} \int_{y_k}^{y_l} \int_{z_0}^{z_i} \frac{1}{r_{ij}} \, dx \, dy \, dz. \tag{11}
\]

Thus, as with the case of parallel plates, the potential coefficient \(P_{ij}\) can be expressed as a weighted sum of integrals of a special type, there being four integrals in the sum in this case. Each integral can be interpreted as the self potential of a virtual plate, an example of which is shown in Figure 5. Moreover, each integral can be simplified to yield a closed-form formula:

\[
I(k,l) = \int_{x_k}^{x_l} \int_{y_k}^{y_l} \int_{z_0}^{z_i} \frac{1}{r_{ij}} \, dx \, dy \, dz
= \frac{2}{\pi} \sum_{m,n=1}^{2} (-1)^{m+n} \left[2\pi \ln(b_m + \rho_{mn}) - \frac{\pi}{3} \ln(b_m + \rho_{mn}) \right.
\]

\[
-\left. c^2 \ln(b_m + \rho_{mn}) + \frac{c^2}{3} \ln(c_n + \rho_{mn}) + \frac{b_m}{3} \ln(c_n + \rho_{mn}) - \frac{b_m}{3} \ln(c_n + \rho_{mn}) \right]
\]

\[
+ 2b_m c_n S \left(x, \frac{x}{\rho_{mn}} \right) - \frac{2b_m c_n S}{3} \left(x, \frac{x}{\rho_{mn}} \right) \frac{S}{\rho_{mn}}.
\]

\[
b_m = b_m \left(x, \frac{x}{\rho_{mn}} \right) - c_n S \left(x, \frac{x}{\rho_{mn}} \right), \tag{12}
\]

where \(x = |x_k - u_l|\), \(\rho_{mn} = \sqrt{x^2 + b_m^2 + c_n^2}\), \(\tau_{mn} = \sqrt{b_m^2 + c_n^2}\), \(b_1 = b_{ij} + \frac{c_n}{\rho_{mn}}\), \(b_2 = b_{ij} - \frac{c_n}{\rho_{mn}}\), \(c_1 = c_{ij} + \frac{b_m}{\rho_{mn}}\), \(c_2 = c_{ij} - \frac{b_m}{\rho_{mn}}\).

Thus,

\[
P_{ij} = \frac{1}{8\pi\epsilon_0 A_i A_j} \sum_{k,l=0}^{1} (-1)^{k+l+1} I(k,l). \tag{13}
\]

These formulas are theoretically equivalent to those in [4]; however, they turn out to be much better-conditioned.
3. NUMERICAL RESULTS

In this section we compare the results for numerical stability of potential coefficients as obtained by evaluating our expressions and as given by formulas in [4]. Results are shown for the following three cases with parallel and perpendicular configurations. In each of the cases the cross-section of the two plates are \(1\mu m \times 1\mu m\). All the expressions have been implemented in MATLAB\(^1\) with double precision.

- **Configuration 1:** Both plates are in the same plane. Potential coefficients are calculated as the horizontal separation between the plates is increased.

- **Configuration 2:** Plates are oriented in parallel direction in two different planes. Potential coefficients are calculated as the vertical separation between the planes is increased.

- **Configuration 3:** Plates are oriented in parallel direction in two different planes. Potential coefficients are calculated as the vertical as well as the horizontal separation between the plates is increased.

- **Configuration 4:** Plates are oriented in perpendicular directions in two different planes. Potential coefficients are calculated as the horizontal separation between the plates is increased.

Results are shown in Figures 6 through 9 respectively. As can be seen from the figures, the formulas from [4] tend to become unstable as the separation between the plates is increased. On the other hand the new formula proposed are much more numerically stable over long distances. Note that some of the setup in these experiments may not reflect on-chip interconnect realistically. However, they do demonstrate the differences in the numerical robustness of the two formulas.

We have also implemented a simple capacitance extraction tool in MATLAB, using the new formulas, based on the BEM (Boundary Element Method) approach described in §1. The purpose is to evaluate the accuracy of the newly derived potential coefficient expressions in the context of capacitance extraction. For this experiment we considered wires of cross-sectional area \(1\mu m \times 1\mu m\).

\(^1\)MATLAB is a registered trademark of Mathworks.
and lengths varying from 2 µm to 16 µm. For each 1 µm × 1 µm
surface, we used a uniform discretization of 5 × 5 panels. The capa-
tance values extracted by our tool and Fastcap are listed in Table 1,
columns 2 and 3. Note that “L” denotes length of the conductor
under consideration. To demonstrate the accuracy of our tool, we
also ran Fastcap with very fine discretization (20 × 20 panels for
each 1 µm × 1 µm surface), leading to more accurate values. These
“Standard” results are reported in column 4 of Table 1. The table
shows that the capacitance values obtained from our tool are at least
as accurate as Fastcap with the same panel discretization.

4. CONCLUSION

We have presented formulas for mutual and self potential co-
efficients of plates that are numerically more stable than the ones
derived in literature [4]. The main reason behind the stability of
our expressions is that all potential coefficients, mutual as well as
self, have been expressed as a weighted sum of self potential coef-
ficients of virtual plates, which are derived to be numerically stable
than their counterparts in [4].

5. REFERENCES

Three-dimensional capacitance evaluation on a connection
machine. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pages 1125–1133, November

capacitance extraction program. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,

circuit environment. IBM Journal of Research and

calculations for three dimensional multiconductor systems.
IEEE Trans. on Microwave Theory and Techniques, pages

hierarchical algorithm for three dimensional capacitance
extraction. IEEE Trans. on Computer-Aided Design of

Inductance and resistance computations for three-dimensional
multiconductor interconnect structures. IEEE Trans. on
Microwave Theory and Techniques, 40(2):263–270, February

dimensional capacitance computations for vlsi/ulsi
interconnections. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pages 1319–1326, December
1989.

formula for partial mutual inductances of rectangular

<table>
<thead>
<tr>
<th>L (in µm)</th>
<th>Our tool</th>
<th>Fastcap</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>95.26</td>
<td>94.89</td>
<td>95.59</td>
</tr>
<tr>
<td>4</td>
<td>132.56</td>
<td>132.20</td>
<td>132.90</td>
</tr>
<tr>
<td>6</td>
<td>165.44</td>
<td>165.10</td>
<td>165.80</td>
</tr>
<tr>
<td>8</td>
<td>195.86</td>
<td>195.50</td>
<td>196.30</td>
</tr>
<tr>
<td>10</td>
<td>224.63</td>
<td>224.30</td>
<td>225.10</td>
</tr>
<tr>
<td>12</td>
<td>252.19</td>
<td>251.80</td>
<td>252.70</td>
</tr>
<tr>
<td>14</td>
<td>278.80</td>
<td>278.50</td>
<td>279.30</td>
</tr>
<tr>
<td>16</td>
<td>304.64</td>
<td>304.30</td>
<td>305.20</td>
</tr>
</tbody>
</table>

Table 1: Capacitance values(×10⁻¹⁸ F) as obtained by Our tool
and Fastcap.
Comments and Corrections

Corrections to “Exact and Numerically Stable Closed-Form Expressions for Potential Coefficients of Rectangular Conductors”

Jitesh Jain, Cheng-Kok Koh, and Venkataramanan Balakrishnan

In the above paper [1], equation (8) should be

\[
I(k, l, m, n) = \int_{x_k}^{x_m} \int_{y_k}^{y_m} \int_{z_k}^{z_m} \frac{1}{r_{ij}} \, dx \, dy \, dz
\]

\[
= \frac{2}{3} \left[6 \left(q^2 - 1 \right) \rho S \left(\frac{q}{\sqrt{p^2 + q^2}} \right) + 6 \left(q^2 - 1 \right) \rho S \left(\frac{p}{\sqrt{q^2 + 1}} \right) + 6 \rho S(p) + 6q S(q) - 12pqT \left(\frac{pq}{\sqrt{p^2 + q^2}} \right) \right]
\]

Equation (12) should be

\[
I(k, l) = \int_{x_k}^{x_l} \int_{y_k}^{y_l} \int_{z_k}^{z_l} \frac{1}{r_{ij}} \, dx \, dy \, dz
\]

\[
= \sum_{m=1}^{2} \sum_{n=1}^{2} (-1)^{m+n} \left[x^2 \rho_m \ln \left(b_m + \rho_{mn} \right) - \frac{\rho_m}{3} \ln \left(b_m + \rho_{mn} + x^2 b_m \ln \left(c_n + \rho_{mn} \right) - \frac{b_m}{3} \ln \left(c_n + \rho_{mn} + x^2 b_m \ln \left(c_n + \rho_{mn} \right) \right) \right]
\]

We would like to point out that correct formulas were used for the numerical implementation in the paper and the experimental results shown in the paper are correct.

We regret our typographical errors and would like to thank Dr. Rafael Escovar from Mentor Graphics for bringing them to our attention.

REFERENCES