On Computing the Worst-Case Peak Gain of Linear Systems*

V. Balakrishnan and S. Boyd
110 Durand Building
Information Systems Laboratory
Department of Electrical Engineering
Stanford University, Stanford CA 94305

Abstract

We present simple upper and lower bounds for the \(\ell^\infty \)-gain of finite-dimensional discrete-time linear time-invariant systems. We use these bounds to derive upper and lower bounds for the worst-case \(\ell^\infty \)-gain of discrete-time systems with diagonal perturbations.

1 Bounds for the \(\ell^\infty \)-gain

We consider a stable, finite-dimensional discrete-time linear time-invariant (LTI) system, described by the state equations

\[
\begin{align*}
 x(k+1) &= Ax(k) + bu(k), \quad x(0) = 0, \\
 y(k) &= cx(k) + du(k),
\end{align*}
\]

(1)

where the input \(u(k) \in \mathbb{R} \), the output \(y(k) \in \mathbb{R} \), and the state \(x(k) \in \mathbb{R}^n \). We assume that \(\{A,b,c,d\} \) is minimal. The \(\ell^\infty \)-gain of system (1), which is the largest possible peak value of the output \(y \) over all possible inputs \(u \) with a peak value of at most one, is just the \(\ell^1 \)-norm of the impulse response:

\[
\sup\limits_{\|u\|_\infty > 0} \frac{\|y\|_\infty}{\|u\|_\infty} = \|h\|_1 = \sum_{k \geq 0} |h(k)|,
\]

where \(h(k) \) is the impulse response of system (1). \(\|u\|_\infty \) stands for the \(\ell^\infty \)-norm of the sequence \(u \), and equals \(\sup_{k \geq 0} |u(k)| \).

\(\|h\|_1 \) is usually approximated by summing only a finite, typically large (say \(N \)) number of terms:

\[
S_N = \sum_{k=0}^{N} |h(k)| \leq \|h\|_1.
\]

Obviously, \(S_N \) is a lower bound for \(\|h\|_1 \), and increases monotonically to \(\|h\|_1 \) with increasing \(N \). The ‘error’ \(\|h\|_1 - S_N \) is just the \(\ell^1 \) norm of the tail, \(\sum_{k>N} |h(k)| \). Many simple bounds on this error are possible.

The first purpose of this note is to present more sophisticated, and in many cases, substantially better bounds for the \(\ell^1 \)-norm of the tail. These bounds, based on Theorem 2 of [3], are given by

\[
\begin{align*}
\sigma_1(W_o^{1/2} A^N W_c^{1/2}) &\leq \sum_{k>N} |h(k)| \quad (2) \\
2 \sum_{i=1}^n \sigma_i(W_o^{1/2} A^N W_c^{1/2}) &\geq \sum_{k>N} |h(k)|
\end{align*}
\]

for all \(N \geq 0 \), where \(W_c \) and \(W_o \) are the controllability and observability Gramians respectively of system (1), \(\sigma_1(P), \sigma_2(P), \ldots, \sigma_n(P) \) are the singular values of \(P \) in decreasing order.) Based on (2), we may compute \(\|h\|_1 \) to within any desired accuracy. We refer the reader to [1] for details.

2 Bounds for the worst-case \(\ell^\infty \)-gain

We now combine the results of the previous section with results from [4] to derive bounds for the worst-case \(\ell^\infty \)-gain of discrete-time LTI systems with diagonal uncertainty. We consider the system shown in Figure 1: \(H \) is a stable discrete-time LTI plant. \(\Delta_1, \Delta_2, \ldots, \Delta_m \) are scalar LTI perturbations that act on the system.

We let \(\delta_i \) denote the impulse response of perturbation \(\Delta_i \), \(h_{00}, h_{10}, \) and \(h_{0i} \) denote the open-loop impulse responses from \(w \) to \(z \), \(w \) to \(y_1 \) and \(u_i \) to \(z \) respectively, and \(h_{cl}(\Delta) \), the closed-loop impulse response from \(w \) to \(z \).
section 1 about computing ℓ^∞-gains apply here as well. We may however use the fact that M has nonnegative entries to derive bounds on L_{wc} based on the bounds for the entries of M:

Theorem 1 Let α_{ij}^N and β_{ij}^N be lower and upper bounds for $\|h_{ij}\|_1$ computed using (2) for some $N > 0$. Let M_{lb}^N and M_{ub}^N be matrices with (i, j)-entry α_{ij}^N and β_{ij}^N respectively $(i, j = 0, 1, \ldots, m)$. Then

$$L_{lb}^N = \Phi(M_{lb}^N) = \sup\{\gamma \mid \rho(D_\gamma M_{lb}^N D_\gamma) \geq 1\},$$

and

$$L_{ub}^N = \Phi(M_{ub}^N) = \sup\{\gamma \mid \rho(D_\gamma M_{ub}^N D_\gamma) \geq 1\},$$

are lower and upper bounds respectively for L_{wc}, i.e. $L_{lb}^N \leq L_{wc} \leq L_{ub}^N$.

L_{lb}^N and L_{ub}^N may be computed easily, using the following fact. For the $(m + 1) \times (m + 1)$ matrix M, with blocks as in equation (4), if $\rho(M^{(22)}) \geq 1$, we have $\Phi(M) = \infty$. Otherwise,

$$\Phi(M) = M^{(11)} + M^{(12)}(I - M^{(22)})^{-1} M^{(21)}.$$

We refer the reader to [1] for details.

References

