Automatic Differentiation of Functional Programs

or Lambda the Ultimate Calculus

Jeffrey Mark Siskind qobi@purdue.edu
School of Electrical and Computer Engineering
Purdue University

University of Chicago
 8 April 2008

Joint work with Barak A. Pearlmutter.

It is, of course, not excluded that the range of arguments or range of values of a function should consist wholly or partly of functions. The derivative, as this notion appears in the elementary differential calculus, is a familiar mathematical example of a function for which both ranges consist of functions.

Church, A. (1941). The Calculi of Lambda Conversion, Princeton University Press, Princeton, NJ.
Gottfried Leibniz
Jacob Bernoulli
Johann Bernoulli
Leonhard Euler
Hubert Anson Newis Lagrange
Mimeon Poisson
Eliakim Hastings Moore
Oswald Veblen
Alonzo Church

Leibnitz (1664) + Church (1941) $=$ Siskind \& Pearlmutter (2008)

Leibnitz, G. W. (1664). A new method for maxima and minima as well as tangents, which is impeded neither by fractional nor irrational quantities, and a remarkable type of calculus for this, Acta Eruditorum.

Higher-order functions are common in mathematics, physics, and engineering: derivatives, gradients, Jacobians, summations, comprehensions, quantifications, optimizations, integrals, convolutions, filters, edge detectors, Fourier transforms, differential equations, Hamiltonians,
where they are traditionally called operators.

Automatic Differentiation (AD)

$$
3 x^{2} \longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} x} \quad \longrightarrow 6 x
$$

Automatic Differentiation (AD)

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Beda, L. M. et al. (1959). Programs for Automatic Differentiation for the Machine BESM, Inst. for Precise Mechanics and Computation Techniques, Academy of Science, Moscow

Finite Differences

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

A Xillion Implementations of AD

A Xillion Implementations of AD

MAPLE: GRADIENT (Monagan \& Neuenschwander, 1993)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
Fortran: ADIFOR (Bischof et al., 1996)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)
HASKELL: (Karczmarczuk, 1998, 1999, 2001; Nilsson, 2003)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)
HaSkell: (Karczmarczuk, 1998, 1999, 2001; Nilsson, 2003)
Scheme: scmutils (Sussman et al., 2001)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)
HaSkell: (Karczmarczuk, 1998, 1999, 2001; Nilsson, 2003)
Scheme: scmutils (Sussman et al., 2001)
Matlab: ADiMat (Bischof et al., 2003)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)
HaSkell: (Karczmarczuk, 1998, 1999, 2001; Nilsson, 2003)
Scheme: scmutils (Sussman et al., 2001)
Matlab: ADiMat (Bischof et al., 2003)

A Xillion Implementations of AD

Maple: GRadient (Monagan \& Neuenschwander, 1993)
FORTRAN: ADIFOR (Bischof et al., 1996)
C++: FADBAD++ (Bendtsen \& Stauning, 1996)
C: ADIC (Bischof et al., 1997)
HASKELL: (Karczmarczuk, 1998, 1999, 2001; Nilsson, 2003)
Scheme: scmutils (Sussman et al., 2001)
Matlab: ADiMat (Bischof et al., 2003)
http://www.autodiff.org

What's Novel?

What's Novel?

- AD for functional programs

Karczmarczuk, J. K. (2001). Functional differentiation of computer programs, Higher Order and Symbolic Computation, 14:35-57.

What's Novel?

- AD for functional programs
- formulated as a higher-order function (in the language)

Karczmarczuk, J. K. (2001). Functional differentiation of computer programs, Higher Order and Symbolic Computation, 14:35-57.

What's Novel?

- AD for functional programs
- formulated as a higher-order function (in the language)
- that reflectively transforms code and data (in closures)

Karczmarczuk, J. K. (2001). Functional differentiation of computer programs, Higher Order and Symbolic Computation, 14:35-57.

What's Novel?

- AD for functional programs
- formulated as a higher-order function (in the language)
- that reflectively transforms code and data (in closures)
- in a way that exhibits closure properties

Karczmarczuk, J. K. (2001). Functional differentiation of computer programs, Higher Order and Symbolic Computation, 14:35-57.

What's Novel?

- AD for functional programs
- formulated as a higher-order function (in the language)
- that reflectively transforms code and data (in closures)
- in a way that exhibits closure properties
- and a compiler that compiles away that reflection

Karczmarczuk, J. K. (2001). Functional differentiation of computer programs, Higher Order and Symbolic Computation, 14:35-57.

Everything You Always Wanted to Know About the Lambda Calculus*

*But Were Afraid To Ask

Everything You Always Wanted to Know About the Lambda Calculus*

(in 8 slides)

*But Were Afraid To Ask

Functional Programming

```
int f(int n)
{ int i, p = 1;
    for (i = 1; i<n; i++)
    { p = p*i;}
    return p;}
```


Functional Programming

$$
\begin{array}{ll}
\text { int } f(\text { int } n) & f n \triangleq \text { if } n=0 \\
\begin{cases}\text { int } i, p=1 ; & \text { then } 1 \\
\text { for }(i=1 ; i<n ; i++) & \text { else } n \times(f(n-1)) \\
\{p=p * i ;\} & \end{cases} \\
\text { return } p ;\} &
\end{array}
$$

Higher-Order Functions

$$
\sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i
$$

Higher-Order Functions

$$
\begin{aligned}
& \sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i \\
& \text { FOLD } i, a, f, g \triangleq \begin{array}{l}
\text { if } i=0 \\
\text { then } a \\
\text { else FOLD }(i-1),(g a,(f i)), f, g
\end{array}
\end{aligned}
$$

Higher-Order Functions

$$
\sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i
$$

FOLD $i, a, f, g \triangleq \mathbf{i f} i=0$
then a
else Fold $(i-1),(g a,(f i)), f, g$
Fold $n, 0, \exp ,+\quad$ Fold $n, 1, \sin , \times$

Higher-Order Functions

$$
\sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i
$$

FOLD $i, a, f, g \triangleq \mathbf{i f} i=0$ then a else Fold $(i-1),(g a,(f i)), f, g$
Fold $n, 0, \exp ,+\quad$ FOLD $n, 1, \sin , \times$
$\sum_{i=1}^{n} 2 i+1$

Higher-Order Functions

$$
\sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i
$$

FOLD $i, a, f, g \triangleq \mathbf{i f} i=0$ then a else Fold $(i-1),(g a,(f i)), f, g$ Fold $n, 0, \exp ,+\quad$ FOLD $n, 1, \sin , \times$

$$
\begin{aligned}
& \sum_{i=1}^{n} 2 i+1 \\
& f i \triangleq 2 i+1 \quad \text { FOLD } n, 0, f,+
\end{aligned}
$$

Higher-Order Functions

$$
\sum_{i=1}^{n} \exp i \quad \prod_{i=1}^{n} \sin i
$$

FOLD $i, a, f, g \triangleq \mathbf{i f} i=0$ then a else Fold $(i-1),(g a,(f i)), f, g$ Fold $n, 0, \exp ,+\quad$ FOLD $n, 1, \sin , \times$

$$
\begin{aligned}
& \sum_{i=1}^{n} 2 i+1 \\
& f i \triangleq 2 i+1 \quad \text { FOLD } n, 0, f,+
\end{aligned}
$$

FOLD $n, 0,(\lambda i 2 i+1),+$

Closures

$$
(\lambda x 2 x) 3=6
$$

Closures

$$
(\lambda x 2 x) 3=6
$$

$$
(\lambda x \lambda y x+y) 34=7
$$

Closures

$$
\begin{aligned}
& (\lambda x 2 x) 3=6 \\
& (\lambda x \lambda y x+y) 34=7 \\
& (\lambda x \lambda y x+y) 3=?
\end{aligned}
$$

Closures

$$
\begin{aligned}
& (\lambda x 2 x) 3=6 \\
& (\lambda x \lambda y x+y) 34=7 \\
& (\lambda x \lambda y x+y) 3=\langle\{x \mapsto 3\}, \lambda y x+y\rangle
\end{aligned}
$$

Closures

$$
\begin{aligned}
& (\lambda x 2 x) 3=6 \\
& (\lambda x \lambda y x+y) 34=7 \\
& \begin{array}{l}
(\lambda x \lambda y x+y) 3=\langle\{x \mapsto 3\}, \lambda y x+y\rangle \\
\lambda x \lambda y x+y \quad \lambda(x, y) x+y
\end{array}
\end{aligned}
$$

Closure Conversion

$$
\begin{aligned}
& f=\lambda y x+y \\
& f 4
\end{aligned}
$$

Closure Conversion

$$
\begin{aligned}
& f=\lambda y x+y \\
& f 4
\end{aligned} \rightsquigarrow \begin{aligned}
& f=(x, \lambda y x+y) \\
& (\operatorname{CDR} f)((\operatorname{CAR} f), 4)
\end{aligned}
$$

Johnsson, T. (1985). Lambda Lifting: Transforming Programs to Recursive Equations, Proceedings Functional Programming Languages and Computer Architecture.

The Lambda Calculus

if e_{1} then e_{2} else $e_{3} \mathbf{f i} \rightsquigarrow \operatorname{IF} e_{1}\left(\lambda x e_{2}\right)\left(\lambda x e_{3}\right)[]$

The Lambda Calculus

if e_{1} then e_{2} else $e_{3} \mathbf{f i} \rightsquigarrow \operatorname{IF} e_{1}\left(\lambda x e_{2}\right)\left(\lambda x e_{3}\right)[]$
$e::=x\left|e_{1} e_{2}\right| \lambda x e$

A-Normal Form

$$
\text { let } x=e_{1} \text { in } e_{2} \quad \rightsquigarrow\left(\lambda x e_{2}\right) e_{1}
$$

A-Normal Form

```
let \(x=e_{1}\) in \(e_{2}\)
let \(x_{1}=e_{1}\);
    \(x_{2}=e_{2} ;\)
    in \(e\)
```

$\rightsquigarrow\left(\lambda x e_{2}\right) e_{1}$
\leadsto let $x_{1}=e_{1}$ in let $x_{2}=e_{2}$;
in e

A-Normal Form

$$
\begin{array}{lcc}
\text { let } x=e_{1} \text { in } e_{2} & \rightsquigarrow & \left(\lambda x e_{2}\right) e_{1} \\
\text { let } x_{1}=e_{1} ; & \rightsquigarrow & \text { let } x_{1}=e_{1} \\
\quad x_{2}=e_{2} ; & & \text { in let } x_{2}=e_{2} ; \\
\vdots & & \vdots \\
\text { in } e & & \text { in } e \\
\left(f_{n} \ldots\left(f_{2}\left(f_{1} x_{0}\right)\right) \ldots\right) & \rightsquigarrow & \text { let } x_{1}=f_{1} x_{0} ; \\
& & x_{2}=f_{2} x_{1} ; \\
& \vdots \\
& & x_{n}=f_{n} x_{n-1} \\
& \text { in } x_{n}
\end{array}
$$

Sabry, A. and Felleisen, M. (1993). Reasoning about Programs in Continuation-Passing Style, Lisp and Symbolic Computation, 3(3-4):289-360.

Nonstandard Interpretations

$$
\begin{aligned}
& 3+4 \\
& \begin{array}{l}
\text { let }+=- \\
\text { in } 3+4
\end{array}=-1
\end{aligned}
$$

Monovariant Flow Analysis

needs work

Polyvariant Flow Analysis

needs work

Shivers, III, O. G. (1991). Control-Flow Analysis of Higher-Order Languages or Taming Lambda, Ph.D. thesis, CMU.

Differential Calculus for Dummies

Differential Calculus for Dummies

(in 7 slides)

Derivatives

$$
\frac{\mathrm{d} a x^{2}}{\mathrm{~d} x} \rightsquigarrow 2 a x
$$

Derivatives

$$
\begin{gathered}
\frac{\mathrm{d} a x^{2}}{\mathrm{~d} x} \rightsquigarrow 2 a x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}: \underbrace{f}_{\mathbb{R} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R} \rightarrow \mathbb{R}}
\end{gathered}
$$

Derivatives

$$
\begin{gathered}
\frac{\mathrm{d} a x^{2}}{\mathrm{~d} x} \rightsquigarrow 2 a x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}: \underbrace{f}_{\mathbb{R} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R} \rightarrow \mathbb{R}} \\
\frac{\mathrm{d}}{\mathrm{~d} x}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R})
\end{gathered}
$$

Derivatives

$$
\begin{gathered}
\frac{\mathrm{d} a x^{2}}{\mathrm{~d} x} \rightsquigarrow 2 a x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}: \underbrace{f}_{\mathbb{R} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R} \rightarrow \mathbb{R}} \\
\frac{\mathrm{d}}{\mathrm{~d} x}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R}) \\
\mathcal{D}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R})
\end{gathered}
$$

Derivatives

$$
\begin{gathered}
\frac{\mathrm{d} a x^{2}}{\mathrm{~d} x} \rightsquigarrow 2 a x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}: \underbrace{f}_{\mathbb{R} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R} \rightarrow \mathbb{R}} \\
\frac{\mathrm{d}}{\mathrm{~d} x}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R}) \\
\mathcal{D}:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R}) \\
\mathcal{D} \lambda x a x^{2}
\end{gathered}
$$

Partial Derivatives

$$
\frac{\partial a x^{2} y^{3}}{\partial x}
$$

$$
\frac{\partial a x^{2} y^{3}}{\partial y}
$$

Partial Derivatives

$$
\begin{array}{rl}
\frac{\partial a x^{2} y^{3}}{\partial x} & \frac{\partial a x^{2} y^{3}}{\partial y} \\
\mathcal{D} \lambda x a x^{2} y^{3} & \mathcal{D} \lambda y a x^{2} y^{3}
\end{array}
$$

Partial Derivatives

$$
\begin{array}{rl}
\frac{\partial a x^{2} y^{3}}{\partial x} & \frac{\partial a x^{2} y^{3}}{\partial y} \\
\mathcal{D} \lambda x a x^{2} y^{3} & \mathcal{D} \lambda y a x^{2} y^{3} \\
\mathcal{D}_{1} \lambda(x, y) a x^{2} y^{3} & \mathcal{D}_{2} \lambda(x, y) a x^{2} y^{3}
\end{array}
$$

Partial Derivatives

$$
\begin{array}{cc}
\frac{\partial a x^{2} y^{3}}{\partial x} & \frac{\partial a x^{2} y^{3}}{\partial y} \\
\mathcal{D} \lambda x a x^{2} y^{3} & \mathcal{D} \lambda y a x^{2} y^{3} \\
\mathcal{D}_{1} \lambda(x, y) a x^{2} y^{3} & \mathcal{D}_{2} \lambda(x, y) a x^{2} y^{3} \\
\frac{\partial}{\partial x}: \underbrace{f}_{\mathbb{R}^{n} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R}^{n} \rightarrow \mathbb{R}}
\end{array}
$$

Partial Derivatives

$$
\begin{array}{cc}
\frac{\partial a x^{2} y^{3}}{\partial x} & \frac{\partial a x^{2} y^{3}}{\partial y} \\
\mathcal{D} \lambda x a x^{2} y^{3} & \mathcal{D} \lambda y a x^{2} y^{3} \\
\mathcal{D}_{1} \lambda(x, y) a x^{2} y^{3} & \mathcal{D}_{2} \lambda(x, y) a x^{2} y^{3} \\
\frac{\partial}{\partial x}: \underbrace{f}_{\mathbb{R}^{n} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R}^{n} \rightarrow \mathbb{R}} \\
\frac{\partial}{\partial x}:\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)
\end{array}
$$

Partial Derivatives

$$
\frac{\partial a x^{2} y^{3}}{\partial x}
$$

$$
\frac{\partial a x^{2} y^{3}}{\partial y}
$$

$$
\mathcal{D} \lambda x a x^{2} y^{3}
$$

$$
\mathcal{D} \lambda y a x^{2} y^{3}
$$

$$
\mathcal{D}_{1} \lambda(x, y) a x^{2} y^{3} \quad \mathcal{D}_{2} \lambda(x, y) a x^{2} y^{3}
$$

$$
\begin{gathered}
\frac{\partial}{\partial x}: \underbrace{f}_{\mathbb{R}^{n} \rightarrow \mathbb{R}} \mapsto \underbrace{f^{\prime}}_{\mathbb{R}^{n} \rightarrow \mathbb{R}} \\
\frac{\partial}{\partial x}:\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \\
\mathcal{D}_{i}:\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)
\end{gathered}
$$

Gradients

$$
\begin{aligned}
\nabla f \mathbf{x} & =\left(\mathcal{D}_{1} f \mathbf{x}\right), \ldots,\left(\mathcal{D}_{n} f \mathbf{x}\right) \\
\nabla & : \quad\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)
\end{aligned}
$$

Jacobians

$$
\begin{aligned}
f & : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\mathbf{f} & :\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)^{m} \\
(\mathcal{J} f \mathbf{x})[i, j] & =(\nabla(\mathbf{f}[i]))[j] \\
\mathcal{J} & :\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right) \rightarrow\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}\right)
\end{aligned}
$$

The Chain Rule

$$
(f \circ g) x=g(f x)
$$

The Chain Rule

$$
\begin{gathered}
(f \circ g) x=g(f x) \\
\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{\mathrm{d} g}{\mathrm{~d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}
\end{gathered}
$$

The Chain Rule

$$
(f \circ g) x=g(f x)
$$

$$
\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{\mathrm{d} g}{\mathrm{~d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}
$$

$$
\mathcal{D}(f \circ g) x=(\mathcal{D} g(f x)) \times(\mathcal{D} f x)
$$

The Chain Rule

$$
(f \circ g) x=g(f x)
$$

$$
\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{\mathrm{d} g}{\mathrm{~d} f} \frac{\mathrm{~d} f}{\mathrm{~d} x}
$$

$$
\mathcal{D}(f \circ g) x=(\mathcal{D} g(f x)) \times(\mathcal{D} f x)
$$

$$
\mathcal{J}(f \circ g) \mathbf{x}=(\mathcal{J} g(f \mathbf{x})) \times(\mathcal{J} f \mathbf{x})
$$

Matrix Transposition

$$
\mathbf{A}^{\top}[i, j]=\mathbf{A}[j, i]
$$

Matrix Transposition

$$
\begin{aligned}
\mathbf{A}^{\top}[i, j] & =\mathbf{A}[j, i] \\
(\mathbf{A} \times \mathbf{B})^{\top} & =\mathbf{B}^{\top} \times \mathbf{A}^{\top}
\end{aligned}
$$

Taylor Expansions

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

Taylor, B. (1715). Methodus Incrementorum Directa et Inversa, London.

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε,

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε,

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 !

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$. The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series. Preserves control flow: Augments original values with derivatives.

The Essence of Forward-Mode AD

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
($\mathcal{D} f$) is $\mathcal{O}(1)$ relative to f (both space and time).

Arithmetic on Complex Numbers

$a+b \mathrm{i}$

Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Transactions of the Royal Irish Academy, 17(1):293-422.

Arithmetic on Complex Numbers

$$
\begin{aligned}
& a+b \mathrm{i} \\
& \mathrm{i}^{2}=-1
\end{aligned}
$$

Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Transactions of the Royal Irish Academy, 17(1):293-422.

Arithmetic on Complex Numbers

$$
\begin{aligned}
& a+b \mathrm{i} \\
& \mathrm{i}^{2}=-1 \\
& \left(a_{1}+b_{1} \mathrm{i}\right)+\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \mathrm{i} \\
& \left(a_{1}+b_{1} \mathrm{i}\right) \times\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1} \times a_{2}-b_{1} \times b_{2}\right)+\left(a_{1} \times b_{2}+a_{2} \times b_{1}\right) \mathrm{i}
\end{aligned}
$$

Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Transactions of the Royal Irish Academy, 17(1):293-422.

Arithmetic on Complex Numbers

$$
\begin{aligned}
& a+b \mathrm{i} \\
& \mathrm{i}^{2}=-1 \\
& \left(a_{1}+b_{1} \mathrm{i}\right)+\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \mathrm{i} \\
& \left(a_{1}+b_{1} \mathrm{i}\right) \times\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1} \times a_{2}-b_{1} \times b_{2}\right)+\left(a_{1} \times b_{2}+a_{2} \times b_{1}\right) \mathrm{i} \\
& \langle a, b\rangle
\end{aligned}
$$

Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Transactions of the Royal Irish Academy, 17(1):293-422.

Arithmetic on Complex Numbers

$$
\begin{aligned}
& a+b \mathrm{i} \\
& \mathrm{i}^{2}=-1 \\
& \left(a_{1}+b_{1} \mathrm{i}\right)+\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \mathrm{i} \\
& \left(a_{1}+b_{1} \mathrm{i}\right) \times\left(a_{2}+b_{2} \mathrm{i}\right)=\left(a_{1} \times a_{2}-b_{1} \times b_{2}\right)+\left(a_{1} \times b_{2}+a_{2} \times b_{1}\right) \mathrm{i} \\
& \langle a, b\rangle \\
& \left\langle a_{1}, b_{1}\right\rangle+\left\langle a_{2}, b_{2}\right\rangle=\left\langle\left(a_{1}+a_{2}\right),\left(b_{1}+b_{2}\right)\right\rangle \\
& \left\langle a_{1}, b_{1}\right\rangle \times\left\langle a_{2}, b_{2}\right\rangle=\left\langle\left(a_{1} \times a_{2}-b_{1} \times b_{2}\right),\left(a_{1} \times b_{2}+a_{2} \times b_{1}\right)\right\rangle
\end{aligned}
$$

Hamilton, W. R. (1837). Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Transactions of the Royal Irish Academy, 17(1):293-422.

Arithmetic on Dual Numbers

$x+x^{\prime} \varepsilon$

Clifford, W. K. (1873). Preliminary Sketch of Bi-quaternions, Proceedings of the London Mathematical Society, 4:381-95.

Arithmetic on Dual Numbers

$$
\begin{aligned}
& x+x^{\prime} \varepsilon \\
& \varepsilon^{2}=0, \text { but } \varepsilon \neq 0
\end{aligned}
$$

Clifford, W. K. (1873). Preliminary Sketch of Bi-quaternions, Proceedings of the London Mathematical Society, 4:381-95.

Arithmetic on Dual Numbers

$$
\begin{aligned}
& x+x^{\prime} \varepsilon \\
& \varepsilon^{2}=0, \text { but } \varepsilon \neq 0 \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right)+\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1}+x_{2}\right)+\left(x_{1}^{\prime}+x_{2}^{\prime}\right) \varepsilon \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right) \times\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1} \times x_{2}\right)+\left(x_{1} \times x_{2}^{\prime}+x_{2} \times x_{1}^{\prime}\right) \varepsilon
\end{aligned}
$$

Clifford, W. K. (1873). Preliminary Sketch of Bi-quaternions, Proceedings of the London Mathematical Society, 4:381-95.

Arithmetic on Dual Numbers

$$
\begin{aligned}
& x+x^{\prime} \varepsilon \\
& \varepsilon^{2}=0, \text { but } \varepsilon \neq 0 \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right)+\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1}+x_{2}\right)+\left(x_{1}^{\prime}+x_{2}^{\prime}\right) \varepsilon \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right) \times\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1} \times x_{2}\right)+\left(x_{1} \times x_{2}^{\prime}+x_{2} \times x_{1}^{\prime}\right) \varepsilon \\
& \left\langle x, x^{\prime}\right\rangle
\end{aligned}
$$

Clifford, W. K. (1873). Preliminary Sketch of Bi-quaternions, Proceedings of the London Mathematical Society, 4:381-95.

Arithmetic on Dual Numbers

$$
\begin{aligned}
& x+x^{\prime} \varepsilon \\
& \varepsilon^{2}=0, \text { but } \varepsilon \neq 0 \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right)+\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1}+x_{2}\right)+\left(x_{1}^{\prime}+x_{2}^{\prime}\right) \varepsilon \\
& \left(x_{1}+x_{1}^{\prime} \varepsilon\right) \times\left(x_{2}+x_{2}^{\prime} \varepsilon\right)=\left(x_{1} \times x_{2}\right)+\left(x_{1} \times x_{2}^{\prime}+x_{2} \times x_{1}^{\prime}\right) \varepsilon \\
& \left\langle x, x^{\prime}\right\rangle \\
& \left\langle x_{1}, x_{1}^{\prime}\right\rangle+\left\langle x_{2}, x_{2}^{\prime}\right\rangle=\left\langle\left(x_{1}+x_{2}\right),\left(x_{1}^{\prime}+x_{2}^{\prime}\right)\right\rangle \\
& \left\langle x_{1}, x_{1}^{\prime}\right\rangle \times\left\langle x_{2}, x_{2}^{\prime}\right\rangle=\left\langle\left(x_{1} \times x_{2}\right),\left(x_{1} \times x_{2}^{\prime}+x_{2} \times x_{1}^{\prime}\right)\right\rangle
\end{aligned}
$$

Clifford, W. K. (1873). Preliminary Sketch of Bi-quaternions, Proceedings of the London Mathematical Society, 4:381-95.

In differential geometry, dual numbers are known as (tangent) bundles of (primal) values x and their tangents \bar{x}.

In differential geometry, dual numbers are known as (tangent) bundles of (primal) values x and their tangents \bar{x}.

$$
x \triangleright \bar{x}
$$

In differential geometry, dual numbers are known as (tangent) bundles of (primal) values x and their tangents \bar{x}.

$$
\vec{x}=x \triangleright \vec{x}
$$

Traditional Forward-Mode AD

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overline{\mathbb{R}^{h}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overline{\mathbb{R}^{\prime \prime}}\right)
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Traditional Forward-Mode AD

$$
\begin{aligned}
& \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overline{\mathbb{R}^{n}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overline{\mathbb{R}^{\prime \prime}}\right) \\
& \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightsquigarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{n}}\right)^{n} \rightarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{m}}\right)^{m}
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Nontraditional Forward-Mode AD

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overline{\mathbb{R}^{n}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overline{\mathbb{R}^{\prime h}}\right) \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{n}}\right)^{n} \rightarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{m}}\right. \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow\left(\tau_{1} \triangleright \overline{\tau_{1}}\right) \rightarrow\left(\tau_{2} \triangleright \overline{\tau_{2}}\right)
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Nontraditional Forward-Mode AD

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overline{\mathbb{R}^{n}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overline{\mathbb{R}^{\prime \prime}}\right) \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow(\mathbb{R} \triangleright \overline{\mathbb{R}})^{n} \rightarrow(\mathbb{R} \triangleright \overline{\mathbb{R}})^{m} \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow\left(\tau_{1} \triangleright \overline{\tau_{1}}\right) \rightarrow\left(\tau_{2} \triangleright \overline{\tau_{2}^{\prime}}\right) \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow \overline{\tau_{1}} \rightarrow \overline{\tau_{2}}
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Nontraditional Forward-Mode AD

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overrightarrow{\mathbb{R}^{n}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overrightarrow{\mathbb{R}^{\prime \prime}}\right) \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{n}}\right)^{n} \rightarrow(\mathbb{R} \triangleright \overline{\mathbb{R}})^{m} \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow\left(\tau_{1} \triangleright \overline{\tau_{1}}\right) \rightarrow\left(\tau_{2} \triangleright \overline{\tau_{2}}\right) \\
\overrightarrow{\mathcal{J}}: \tau_{1} \rightarrow \tau_{2} & \mapsto \overline{\tau_{1}} \rightarrow \overrightarrow{\tau_{2}}
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Nontraditional Forward-Mode AD

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overrightarrow{\mathbb{R}^{n}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overrightarrow{\mathbb{R}^{\prime \prime}}\right) \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R} \triangleright \overline{\mathbb{R}^{n}}\right)^{n} \rightarrow(\mathbb{R} \triangleright \overline{\mathbb{R}})^{m} \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow\left(\tau_{1} \triangleright \overline{\tau_{1}}\right) \rightarrow\left(\tau_{2} \triangleright \overline{\tau_{2}}\right) \\
\overrightarrow{\mathcal{J}}: \tau_{1} \rightarrow \tau_{2} & \mapsto \overrightarrow{\tau_{1}} \rightarrow \overrightarrow{\tau_{2}} \\
\overrightarrow{\mathcal{J}}: \tau & \mapsto \vec{\tau}
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Nontraditional Forward-Mode AD

$$
\begin{aligned}
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R}^{n} \triangleright \overrightarrow{\mathbb{R}^{\prime}}\right) \rightarrow\left(\mathbb{R}^{m} \triangleright \overrightarrow{\mathbb{R}^{\prime \prime}}\right) \\
\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \rightsquigarrow\left(\mathbb{R} \triangleright \overrightarrow{\mathbb{R}^{\prime}}\right)^{n} \rightarrow\left(\mathbb{R} \triangleright \overrightarrow{\mathbb{R}^{\prime}}\right)^{m} \\
\tau_{1} \rightarrow \tau_{2} & \rightsquigarrow\left(\tau_{1} \triangleright \overline{\tau_{1}}\right) \rightarrow\left(\tau_{2} \triangleright \overline{\tau_{2}}\right) \\
\overrightarrow{\mathcal{J}}: \tau_{1} \rightarrow \tau_{2} & \mapsto \overrightarrow{\tau_{1}} \rightarrow \overrightarrow{\tau_{2}} \\
\overrightarrow{\mathcal{J}}: \tau & \mapsto \vec{\tau} \\
\mathcal{D} f x & =\text { let } y_{1} \triangleright \overrightarrow{y_{2}}=(\overrightarrow{\mathcal{J}} f) x \triangleright \overrightarrow{1} \text { in } y_{2}
\end{aligned}
$$

Wengert, R. E. (1964). A simple automatic derivative evaluation program, Communications of the ACM, 7(8):463-4.

Modularity

$$
\nabla f \mathbf{x} \quad \triangleq \quad \frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}
$$

Modularity

$$
\nabla f \mathbf{x} \quad \triangleq \quad \frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}
$$

\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots
$$

Modularity

$$
\nabla f \mathbf{x} \quad \triangleq \quad \frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}
$$

GradientDescent $f \mathbf{x}_{0}$
$\operatorname{argmin} f$

$$
\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots
$$

\triangleq
\ldots GradientDescent $f \mathbf{x}_{0} \ldots$

Modularity

$$
\nabla f \mathbf{x} \quad \triangleq \quad \frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}
$$

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} f$
NeutronFlux r
\triangleq
... GradientDescent $f \mathbf{x}_{0} \ldots$
classified

Modularity

$$
\nabla f \mathbf{x} \quad \triangleq \quad \frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}
$$

$\operatorname{argmin} f$

$$
\triangleq \quad \ldots \text { GradientDescent } f \mathbf{x}_{0} \ldots
$$

NeutronFlux r

$$
\triangleq \quad \text { classified }
$$

$$
\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots
$$

$$
\triangleq \quad\left((\text { NeUTRONFLUX } r)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}
$$

Modularity

$\nabla f \mathbf{x}$	\triangleq	$\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}$
GRADIENTDESCENT $f \mathbf{x}_{0}$	\triangleq	$\ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
argmin f	\triangleq	\ldots GRADIENTDESCENT $f \mathbf{x}_{0} \ldots$
NEUTRONFLUX r	\triangleq	\ldots classified
	\triangleq	
DEVIATION r		
	\triangleq	
r^{*}		

Breaking Modularity

$\nabla f \mathbf{x} \quad \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right)$

GradientDescent $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux r
r^{*}
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots$ GradientDescent $f \mathbf{x}_{0} \ldots$
$\triangleq \quad$ classified
\triangleq
$\left((\text { Neutronfled })-\text { NeutronFlux }_{\text {critical }}\right)^{2}$
argmin Deviation

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$$
\begin{array}{lll}
\nabla \vec{f} \mathbf{x} & \triangleq & \left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right) \\
\text { GRADIENTDESCENT } f \mathbf{x}_{0} & \triangleq & \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots \\
\text { argmin } f & \triangleq & \ldots \text { GrADIENTDESCENT } f \mathbf{x}_{0} \ldots \\
\text { NEUTRONFLUX } r & \triangleq & \text { classified } \\
& \triangleq & \\
\text { DEVIATION } r & ((\text { NEUTRONFLUX } r)-\text { NEUTRONFLUX } \\
& & \\
\left.r_{\text {critical }}\right)^{2} \\
& \triangleq & \text { argmin DEVIATION }
\end{array}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \vec{f} \mathbf{x}$
$\triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}}_{n}\right)$

GradientDescent $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux r

Deviation r
r^{*}
\triangleq
$\left((\text { NeUtronFlux } r)-\text { NeUtronFluX }_{\text {critical }}\right)^{2}$
$\triangleq \quad$ argmin DEVIATION

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$$
\begin{aligned}
& \nabla \vec{f} \mathbf{x} \\
& \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right) \\
& \text { GradientDescent } \vec{f} \mathbf{x}_{0} \quad \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots \\
& \operatorname{argmin} f \\
& \text { NeutronFlux } r \\
& r^{*} \\
& \triangleq \quad \ldots \text { GradientDescent } f \mathbf{x}_{0} \ldots \\
& \triangleq \quad \text { classified } \\
& \triangleq \\
& ((\text { NeutronFlux }) \text { - NeutronFluX } \text { critical })^{2} \\
& \text { argmin Deviation }
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$$
\begin{aligned}
& \nabla \vec{f} \mathbf{x} \\
& \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right) \\
& \text { GradientDescent } \vec{f} \mathbf{x}_{0} \quad \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots \\
& \operatorname{argmin} f \\
& \text { NeutronFlux } r \\
& r^{*} \\
& \triangleq \quad \ldots \text { GradientDescent } \vec{f} \mathbf{x}_{0} \ldots \\
& \triangleq \quad \text { classified } \\
& \triangleq \\
& \left((\text { NeutronFlux })-\text { NeutronFluX }_{\text {critical }}\right)^{2} \\
& \text { argmin Deviation }
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$$
\begin{aligned}
& \nabla \vec{f} \mathbf{x} \\
& \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right) \\
& \text { GradientDescent } \vec{f} \mathbf{x}_{0} \quad \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots \\
& \operatorname{argmin} \vec{f} \\
& \text { NeutronFlux } r \\
& r^{*} \\
& \triangleq \quad \ldots \text { GradientDescent } \vec{f} \mathbf{x}_{0} \ldots \\
& \triangleq \quad \text { classified } \\
& \triangleq \\
& \left((\text { Neutronfled })-\text { NeutronFlux }_{\text {critical }}\right)^{2} \\
& \triangleq \quad \text { argmin DEVIATION }
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$$
\begin{aligned}
& \nabla \vec{f} \mathbf{x} \\
& \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right) \\
& \text { GradientDescent } \vec{f} \mathbf{x}_{0} \quad \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots \\
& \operatorname{argmin} \vec{f} \\
& \text { NeutronFlux } r \\
& r^{*} \\
& \triangleq \quad \ldots \text { GradientDescent } \vec{f} \mathbf{x}_{0} \ldots \\
& \triangleq \quad \text { classified } \\
& \triangleq \\
& ((\text { Neutronflux }) \text { - NeutronFLuX } \text { critical })^{2} \\
& \triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \vec{f} \mathbf{x} \quad \triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{i}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right)$

Gradientdescent $\vec{f} \mathbf{x}_{0} \quad \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots$
$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r

DEVIATION r
DEVIATION
r^{*}
\triangleq
ADIFOR
$\left((\text { Neutronflen } r)-\text { Neutronflux }_{\text {critical }}\right)^{2}$ $\xrightarrow[\text { DEVIATION }]{ }$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \vec{f} \mathbf{x}$
$\triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\boldsymbol{e}_{n}}\right)$

GradientDescent $\vec{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION r
DEVIATION
r^{*}
\triangleq
ADIFOR
$\left((\text { Neutronflux } \text {) - NeutronFlux } \text { critical })^{2}\right.$ $\xrightarrow[\text { DEVIATION }]{ }$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \vec{f} \mathbf{x}$
$\triangleq \quad\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left(\vec{f} \mathbf{x} \triangleright \overrightarrow{\mathbf{e}}_{n}\right)$

GradientDescent $\vec{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots
$$

argmin \vec{f}
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

\triangleq	\ldots GRADIENTDE
\triangleq	classified
	$\stackrel{\text { NEUTRONFLUX }}{ }$

$$
\underset{\text { ADIFOR }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFlux }_{\text {critical }}\right)^{2}$ $\xrightarrow[\text { DEVIATION }]{ }$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \vec{f} \mathbf{x}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\vec{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\stackrel{\text { ADIFOR }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2}$
$\stackrel{\rightharpoonup}{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \stackrel{f}{x}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\vec{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \vec{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

\triangleq	GRADIENTDE
\triangleq	classified
$\xrightarrow[\rightarrow]{\text { ADIFOR }}$	NEUTRONFLUX

$$
\underset{\text { ADIFOR }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFlux }_{\text {critical }}\right)^{2}$
$\xrightarrow[\text { DEVIATION }]{ }$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \stackrel{f}{x}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\vec{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

\triangleq	GRADIENTDE
\triangleq	classified
$\xrightarrow[\rightarrow]{\text { ADIFOR }}$	NEUTRONFLUX

$$
\underset{\text { ADIFOR }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFlux }_{\text {critical }}\right)^{2}$
$\xrightarrow[\text { DEVIATION }]{ }$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

\triangleq	GRADIENTDE
\triangleq	classified
$\xrightarrow[\rightarrow]{\text { ADIFOR }}$	NEUTRONFLUX

$$
\stackrel{\text { ADifor }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFlux }_{\text {critical }}\right)^{2}$
$\stackrel{\rightharpoonup}{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \vec{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}
$\stackrel{\text { ADIFOR }}{\underset{\sim}{\triangle}} \quad \xrightarrow[\text { DEVIATION }]{\left((\text { NEUTRONFLUX } \mathbf{r})-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}}$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \stackrel{f}{x}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \check{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}
$\stackrel{\text { ADIFOR }}{\underset{\sim}{\triangle}} \quad \xrightarrow[\text { DEVIATION }]{\left((\text { NEUTRONFLUX } \mathbf{r})-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}}$
$\triangleq \quad \operatorname{argmin} \stackrel{\rightharpoonup}{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \check{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\stackrel{\text { ADifor }}{\triangleq}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFlux }_{\text {critical }}\right)^{2}$
$\stackrel{\rightharpoonup}{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \stackrel{f}{\mathbf{x}} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \check{f}$
NEUTRONFLUX r
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}
...GradientDescent ${ }^{\prime} \mathbf{x}_{0} \ldots$
classified
$\overline{\text { NEUTRONFLUX }}$
$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2}$ $\overline{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \widehat{f} \mathbf{x} \ldots$

GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
\triangleq

$$
\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots
$$

$\operatorname{argmin} \check{f}$
NEUTRONFLUX \mathbf{r}
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\begin{gathered}
\triangleq \\
\stackrel{\text { PENADE }}{\Longrightarrow}
\end{gathered}
$$

$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2}$ $\overline{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f}$
$\triangleq \quad \ldots \widehat{f} \mathbf{x} \ldots$

GradientDescent $\bar{f} \mathbf{x}_{0}$
\triangleq
$\ldots \mathbf{x}_{i+1}:=\ldots \nabla^{\wedge} \mathbf{x}_{i} \ldots$
NewtonsMethod $\stackrel{f}{f} \mathbf{x}_{0}$ $\operatorname{argmin} \bar{f}$

NEUTRONFLUX \mathbf{r}
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}
$\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots$
... Gradientdescent $f \mathbf{x}_{0} \ldots$
classified
$\widehat{\text { NEUTRONFLUX }}$
$\left(\left(\text { NeUtronFlux }^{\mathbf{r}}\right)-\text { NeUtronFluX }_{\text {critical }}\right)^{2}$ $\overline{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \stackrel{f}{x}$
$\triangleq \quad \ldots \widehat{f} \mathbf{x} \ldots$

GradientDescent $\bar{f} \mathbf{x}_{0}$ $\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \delta{ }^{\prime} \mathbf{x}_{i} \ldots$
Newtonsmethod $\overleftarrow{f} \mathbf{x}_{0}$ $\operatorname{argmin} \bar{f}$

NEUTRONFLUX \mathbf{r}
NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}
$\left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2}$ $\overline{\text { DEVIATION }}$
$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \overleftarrow{f} \mathbf{x}$
$\mathcal{H} f \mathbf{x}$
GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$
Newtonsmethod $\overleftarrow{f} \mathbf{x}_{0}$
$\operatorname{argmin} \overleftarrow{f}$
NeutronFlux \mathbf{r}
NeutronFlux

Deviation r
Deviation
\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \widehat{f} \mathbf{x} \\
& \triangleq \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \bar{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\mathcal{f}}{\mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots} \\
& \triangleq \quad \ldots \text { NewtonsMethod } \stackrel{\mathbf{x}_{0} \ldots}{ } \\
& \text { classified } \\
& \widehat{\text { NEUTRONFLUX }} \\
& \left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2} \\
& \overline{\text { DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overleftarrow{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$H_{f x}$
argmin $\stackrel{f}{ }$
Neutronfux
utronfi

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

\triangleq	$\ldots \overleftarrow{f} \mathbf{x} \ldots$
\triangleq	$\underset{f}{\stackrel{\rightharpoonup}{f}}$
\triangleq	$\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots$
\triangle	$\ldots \mathbf{x}_{i+1}:=\ldots \nabla \overleftarrow{f} \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i}$
\triangleq	...NewtonsMethod $\overleftarrow{f} \mathbf{x}_{0} \ldots$
\triangleq	classified
$\xrightarrow[\sim]{\text { TAPENADE }}$	NEUTRONFLUX

$\triangleq \quad\left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}$ $\overline{\text { DEVIATION }}$

$\triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\vec{H} \vec{f} \mathbf{x}$
NewtonsMethod $\check{f} \mathbf{x}_{0}$ $\operatorname{argmin} \bar{f}$
onflux

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \check{f}_{\mathbf{x}} \ldots \\
& \triangleq \quad \ldots \stackrel{\stackrel{\rightharpoonup}{f}}{\ldots} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\mathbf{x}_{i}}{ } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \triangleq \quad \ldots \text { Newtonsmethod } \check{f} \mathbf{x}_{0} \ldots \\
& \stackrel{\text { TAPENADE }}{\triangleq} \stackrel{\text { classified }}{\stackrel{\text { NEUTRONFLUX }}{ }} \\
& \underset{\underset{\sim}{\text { TAPENADE }}}{\triangleq} \quad \underbrace{\left((\text { NEUTRONFLUX } \mathbf{r})-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}}_{\text {DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\vec{H} \vec{f} \mathbf{x}$
NewtonsMethod $\check{f} \mathbf{x}_{0}$ $\operatorname{argmin} \bar{f}$
onflux

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \check{f}_{\mathbf{x}} \ldots \\
& \triangleq \quad \ldots \stackrel{\rightharpoonup}{f} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\kappa}{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\leftharpoonup}{f} \mathbf{x}_{i} \ldots \mathcal{H} \stackrel{\stackrel{\rightharpoonup}{f}}{\mathbf{x}_{i}} \ldots \\
& \triangleq \quad \ldots \text { Newtonsmethod } \check{f} \mathbf{x}_{0} \ldots \\
& \stackrel{\text { TAPENADE }}{\triangleq} \stackrel{\text { classified }}{\stackrel{\text { NEUTRONFLUX }}{ }} \\
& \underset{\underset{\sim}{\text { TAPENADE }}}{\triangleq} \quad \underbrace{\left((\text { NEUTRONFLUX } \mathbf{r})-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}}_{\text {DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\mathcal{H} \overrightarrow{\vec{f}} \mathbf{x}$ GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$ NewtonsMethod $\stackrel{\stackrel{\rightharpoonup}{f}}{\underset{f}{\stackrel{\rightharpoonup}{x}}}$ $\operatorname{argmin} \check{f}$ NEUTRONFLUX \mathbf{r} NEUTRONFLUX

Deviation r
 Deviation

\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \widehat{f} \mathbf{x} \ldots \\
& \triangleq \quad \quad \quad \stackrel{\rightharpoonup}{f} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla{ }_{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\kappa}{f} \mathbf{x}_{i} \ldots \mathcal{H} \stackrel{\rightharpoonup}{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \text { NewtonsMethod } \stackrel{\check{f} \mathbf{x}_{0} \ldots}{ } \\
& \triangleq \quad \text { classified } \\
& \widehat{\text { NEUTRONFLUX }} \\
& \left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2} \\
& \overline{\text { DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\mathcal{H} \overrightarrow{\vec{f}} \mathbf{x}$ GradientDescent $\overleftarrow{f} \mathbf{x}_{0}$ NewtonsMethod $\stackrel{\stackrel{\rightharpoonup}{f}}{\underset{f}{\stackrel{\rightharpoonup}{x}}}$ $\operatorname{argmin} \check{f}$ NEUTRONFLUX \mathbf{r} NEUTRONFLUX

Deviation r
 Deviation

\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \overleftarrow{f} \mathbf{x} \ldots \\
& \triangleq \quad \ldots \stackrel{\rightharpoonup}{f} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla{ }_{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\leftharpoonup}{f} \mathbf{x}_{i} \ldots \mathcal{H} \stackrel{\rightharpoonup}{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \text { NewtonsMethod } \stackrel{\underset{f}{\underset{f}{x}} \mathbf{x}_{0} \ldots .}{ } \\
& \text { classified } \\
& \widehat{\text { NEUTRONFLUX }} \\
& \left(\left(\text { NeutronFlux }^{\mathbf{r}}\right)-\text { NeutronFluX }_{\text {critical }}\right)^{2} \\
& \widehat{\text { DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overleftarrow{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\mathcal{H} \vec{f} \mathrm{x}$ Gradentdescent ${ }_{f}^{f} \mathbf{x}_{0}$ NewtonsMerthoo $\stackrel{f}{f} \vec{f} \mathbf{x}_{0}$ $\operatorname{argmin} \stackrel{f}{f} \vec{f}$ NEUTRONFLUX \mathbf{r} NEUTRONFLUX

Deviation r
 Deviation

\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \overleftarrow{f} \mathbf{x} \ldots \\
& \triangleq \quad \ldots \stackrel{\rightharpoonup}{f} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla<\bar{f} \mathbf{x}_{i} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{{ }_{f}}{\mathbf{x}_{i} \ldots \mathcal{H}{ }_{f}^{\vec{f}} \mathbf{x}_{i} \ldots} \\
& \triangleq \quad \ldots \text { NewtonsMethod } \stackrel{\underset{f}{\underset{f}{x}} \mathbf{x}_{0} \ldots}{ } \\
& \stackrel{\text { classified }}{\triangleq} \underset{\substack{\text { TAPENADE }}}{\stackrel{\text { NEUTRONFLUX }}{ }} \\
& \left.\underset{\substack{\text { TAPENADE } \\
\hdashline}}{\triangleq} \quad \begin{array}{l}
((\text { NeUtronFLUX } \mathbf{r})-\text { NeUtronFluX } \\
\text { DEVItical }
\end{array}\right)^{2} \\
& \triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\mathcal{H} \vec{f} \mathrm{x}$ Gradentdescent ${ }_{f}^{f} \mathbf{x}_{0}$ NewtonsMerthoo $\stackrel{f}{f} \vec{f} \mathbf{x}_{0}$ $\operatorname{argmin} \stackrel{f}{f} \vec{f}$ NEUTRONFLUX \mathbf{r} NEUTRONFLUX

DEVIATION \mathbf{r}
DEVIATION
\mathbf{r}^{*}

$$
\begin{aligned}
& \triangleq \quad \ldots \check{f}_{\mathbf{x}} \ldots \\
& \triangleq \quad \ldots \stackrel{\stackrel{\rightharpoonup}{f}}{\rightleftarrows} \ldots \mathbf{x} \ldots \\
& \triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla \stackrel{\wedge}{f} \mathbf{x}_{i} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \triangleq \quad \ldots \text { Newtonsmethod } \stackrel{\check{f}}{\stackrel{\tau}{f}} \mathbf{x}_{0} \ldots \\
& \text { classified } \\
& \text { NEUTRONFLUX } \\
& \left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2} \\
& \overline{\text { DEVIATION }} \\
& \triangleq \quad \operatorname{argmin} \overline{\text { DEVIATION }} \overline{\overline{\text { DEVIATION }}}
\end{aligned}
$$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Breaking Modularity

$\nabla \stackrel{f}{\mathbf{x}}$	\triangleq	$\ldots{ }^{\ldots} \times \ldots$
	\triangleq	$\stackrel{\rightharpoonup}{f}$
GradientDescent $\stackrel{\sim}{f} \mathbf{x}_{0}$	\triangleq	$\ldots \mathbf{x}_{i+1}:=\ldots \nabla \bar{f} \mathbf{x}_{i} \ldots$
Newtonsmethod $\stackrel{\tau_{f}}{\mathbf{x}_{0}}$	\triangleq	
$\underset{f}{\underset{f}{\rightleftarrows}}$	\triangle	$\breve{f}_{\underset{f}{\rightleftarrows}}^{\rightleftarrows}$
$\operatorname{argmin} f f$		\ldots.. NewtonsMethod f f $\mathbf{x}_{0} \ldots$
NeutronFlux r	\triangleq	classified
NeutronFlux	$\xrightarrow[\sim]{\text { Tapenade }}$	NeutronFlux
NeutronFlux	$\xrightarrow[\sim]{\text { Tapenade }}$	$\overline{\text { NeutronFlux }}$
Deviation r	\triangleq	
Deviation	$\xrightarrow[\sim]{\text { Tapenade }}$	Deviation
$\overline{\text { DEVIATION }}$	$\xrightarrow{\text { Tapenade }}$	$\overline{\text { DEVIATION }}$
r*	\triangleq	argmin $\overline{\text { DEVIATION }} \overline{\overline{\text { DEVIATION }}}$

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Restoring Modularity

$\nabla f \mathbf{x}$
$\mathcal{H} f \mathbf{x}$
GradientDescent $f \mathbf{x}_{0}$
NewtonsMethod $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux \mathbf{r}
\triangleq
\triangleq
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots$ GradientDescent $f \mathbf{x}_{0} \ldots$
$\triangleq \quad$ classified
$\triangleq \quad\left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}$
$\triangleq \quad$ argmin DEVIATION

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Restoring Modularity

$\nabla f \mathbf{x}$
$\mathcal{H} f \mathbf{x}$
GradientDescent $f \mathbf{x}_{0}$
NewtonsMethod $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux \mathbf{r}
$\triangleq \quad\left((\overrightarrow{\mathcal{J}} f) \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{1}}\right), \ldots,\left((\overrightarrow{\mathcal{J}} f) \mathbf{x} \triangleright \overrightarrow{\mathbf{e}_{n}}\right)$
\triangleq
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots$ GradientDescent $f \mathbf{x}_{0} \ldots$
$\triangleq \quad$ classified
$\triangleq \quad\left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}$
$\triangleq \quad$ argmin DEVIATION

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Restoring Modularity

$\nabla f \mathbf{x}$
$\mathcal{H} f \mathbf{x}$
GradientDescent $f \mathbf{x}_{0}$
NewtonsMethod $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux \mathbf{r}
$\triangleq \quad \ldots(\overleftarrow{\mathcal{J}} f) \mathbf{x} \ldots$
\triangleq
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots$ GradientDescent $f \mathbf{x}_{0} \ldots$
$\triangleq \quad$ classified
$\triangleq \quad\left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}$
argmin Deviation

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4.

Restoring Modularity

$\nabla f \mathbf{x}$
$\mathcal{H} f \mathbf{x}$
GradientDescent $f \mathbf{x}_{0}$
NewtonsMethod $f \mathbf{x}_{0}$
$\operatorname{argmin} f$
NeutronFlux \mathbf{r}
$\triangleq \quad \ldots(\overleftarrow{\mathcal{J}} f) \mathbf{x} \ldots$
$\triangleq \quad \ldots(\overrightarrow{\mathcal{J}}(\overleftarrow{\mathcal{J}} f)) \ldots \mathbf{x} \ldots$
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots \mathbf{x}_{i+1}:=\ldots \nabla f \mathbf{x}_{i} \ldots \mathcal{H} f \mathbf{x}_{i} \ldots$
$\triangleq \quad \ldots$ NewtonsMethod $f \mathbf{x}_{0} \ldots$
$\triangleq \quad$ classified
$\triangleq \quad\left(\left(\text { NEUTRONFLUX }^{\mathbf{r}}\right)-\text { NEUTRONFLUX }_{\text {critical }}\right)^{2}$
$\triangleq \quad$ argmin DEVIATION

Fermi, E. (1946). The Development of the first chain reaction pile. Proceedings of the American Philosophy Society, 90:20-4,

Closure Properties

polynomials

Closure Properties

polynomials, product rule

Closure Properties

polynomials, product rule, quotient rule

Closure Properties

polynomials, product rule, quotient rule, transcendental functions

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
chain rule

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: function composition

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: function composition
An inductive definition of the space of expressions

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: function composition
An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) expression

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: function composition
An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) expression

$$
\text { output space } \subseteq \text { input space }
$$

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: function composition
An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) expression

$$
\text { output space } \subseteq \text { input space }
$$

Consequence 2: could take higher-order derivatives

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
chain rule
Inductive case: lambda calculus
An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) expression

$$
\text { output space } \subseteq \text { input space }
$$

Consequence 2: could take higher-order derivatives

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
AD

Inductive case: lambda calculus

An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) expression

$$
\text { output space } \subseteq \text { input space }
$$

Consequence 2: could take higher-order derivatives

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
AD

Inductive case: lambda calculus

An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) program

$$
\text { output space } \subseteq \text { input space }
$$

Consequence 2: could take higher-order derivatives

Closure Properties

polynomials, product rule, quotient rule, transcendental functions
Base case: arithmetic basis
AD

Inductive case: lambda calculus

An inductive definition of the space of expressions
Consequence 1: could take the derivative of any (differentiable) program

$$
\text { output space } \subseteq \text { input space }
$$

Consequence 2: could take higher-order derivatives of programs

A Brief History of Programming Languages

Fortran

Backus, J. W. (1954). Preliminary Report: Specifications for the IBM Mathematical FORmula TRANslating System, FORTRAN, International Business Machines.

A Brief History of Programming Languages

FORTRAN no recursion

Backus, J. W. (1954). Preliminary Report: Specifications for the IBM Mathematical FORmula TRANslating System, FORTRAN, International Business Machines.

A Brief History of Programming Languages

Fortran no recursion AlGol recursion

Naur, P. et al. (1963). Revised report on the algorithmic language Algol 60, Communications of the ACM, 6(1):1-17.

A Brief History of Programming Languages

Fortran no recursion Algol recursion no arrays of arrays

Naur, P. et al. (1963). Revised report on the algorithmic language Algol 60, Communications of the ACM, 6(1):1-17.

A Brief History of Programming Languages

FORTRAN no recursion
Algol recursion
no arrays of arrays
AlGOL-68 recursion arrays of arrays
van Wijngaarden, A. et al. 1976, Revised Report on the Algorithmic Language Algol 68, Springer-Verlag.

A Brief History of Programming Languages

FORTRAN no recursion ALGOL recursion no arrays of arrays
ALGOL-68 recursion arrays of arrays no escaping closures

van Wijngaarden, A. et al. 1976, Revised Report on the Algorithmic Language Algol 68, Springer-Verlag.

A Brief History of Programming Languages

FORTRAN no recursion
Algol recursion
no arrays of arrays
ALGOL-68 recursion arrays of arrays no escaping closures
SCHEME recursion
arrays of arrays
escaping closures

Sussman, G. J. and Steele, Jr., G. L. (1975). Scheme: an Interpreter for Extended Lambda Calculus, MIT AI memo 349.

Game Theory

needs work
von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.

Shooting Method

needs work

Goldstine, A. (1946). Report on the ENIAC (Electronic Numerical Integrator and Computer), Moore School of Electrical Engineering, University of Pennsylvania.

Cathode Ray Tubes

needs work

Sprague, C. S. and George, R. H. (1939). Cathod Ray Deflecting Electrode. US Patent 2,161,437.

George, R. H. (1940). Cathod Ray Tube. US Patent 2,222,942.

Stalin ∇ vs. Scheme

	Language/Implementation										
Example	STALIN ∇	IKARUS	STALIN	SCHEME->C	CHICKEN	BIGLoo	GAMBIT	LARCENY	MZC	MZSCHEME	SCMUTILS
saddle	1.00	61.71	94.85	112.90	233.35	175.07	130.50	184.90	613.45	720.41	705.10
particle	1.00	146.96	248.00	308.34	609.30	501.59	351.20	537.07	1453.19	1868.88	1512.90

Stalin ∇ vs ML and Haskell

Language/Implementation

Example	StaLin ∇	MLTON	SML/nJ	OCAML	GHC
saddle	1.00	11.19	16.68	21.25	31.08
particle	1.00	33.13	40.34	58.53	74.56

The State of the Art Regarding Closure Properties

The State of the Art Regarding Closure Properties

ADIFOR

The State of the Art Regarding Closure Properties

ADIFOR miscomputes call graph

The State of the Art Regarding Closure Properties

ADIFOR	miscomputes call graph confuses nesting with recursion

The State of the Art Regarding Closure Properties

ADIFOR	miscomputes call graph
	confuses nesting with recursion
cannot handle indirect function calls	

The State of the Art Regarding Closure Properties

ADIFOR	miscomputes call graph
	confuses nesting with recursion
	cannot handle indirect function calls
	generates incorrect derivative code

The State of the Art Regarding Closure Properties

ADIFOR miscomputes call graph confuses nesting with recursion cannot handle indirect function calls generates incorrect derivative code gives wrong answer without warning

The State of the Art Regarding Closure Properties

```
ADIFOR miscomputes call graph
    confuses nesting with recursion
    cannot handle indirect function calls
    generates incorrect derivative code
    gives wrong answer without warning
    to get it to work
        specialize indirect function calls
        copy code
        split code into separate files
        manually edit both input code and generated code
```


The State of the Art Regarding Closure Properties

ADIFOR	miscomputes call graph confuses nesting with recursion cannot handle indirect function calls generates incorrect derivative code gives wrong answer without warning to get it to work specialize indirect function calls copy code split code into separate files manually edit both input code and generated code

The State of the Art Regarding Closure Properties

ADIFOR \quad| miscomputes call graph |
| :--- |
| confuses nesting with recursion |
| cannot handle indirect function calls |
| generates incorrect derivative code |
| gives wrong answer without warning |
| to get it to work |
| specialize indirect function calls |
| |
| |
| |
| |
| |
| |
| copy code |
| split code into separate files |
| manually edit both input code and generated code |
| TAPENADE |

generates code with syntax errors

The State of the Art Regarding Closure Properties

```
ADIFOR miscomputes call graph
    confuses nesting with recursion
    cannot handle indirect function calls
    generates incorrect derivative code
    gives wrong answer without warning
    to get it to work
        specialize indirect function calls
        copy code
        split code into separate files
        manually edit both input code and generated code
TAPENADE generates code with syntax errors
        cannot handle indirect function calls
```


The State of the Art Regarding Closure Properties

ADIFOR \quadmiscomputes call graph confuses nesting with recursion cannot handle indirect function calls generates incorrect derivative code gives wrong answer without warning to get it to work	
	specialize indirect function calls
	copy code
	split code into separate files manually edit both input code and generated code
TAPENADE \quadgenerates code with syntax errors cannot handle indirect function calls generates incorrect derivative code	

The State of the Art Regarding Closure Properties

```
ADIFOR miscomputes call graph
    confuses nesting with recursion
    cannot handle indirect function calls
    generates incorrect derivative code
    gives wrong answer without warning
    to get it to work
        specialize indirect function calls
        copy code
        split code into separate files
        manually edit both input code and generated code
TAPENADE generates code with syntax errors
        cannot handle indirect function calls
        generates incorrect derivative code
        gives wrong answer (with aliasing warning)
```


The State of the Art Regarding Closure Properties

ADIFOR m	miscomputes call graph confuses nesting with recursion cannot handle indirect function calls generates incorrect derivative code gives wrong answer without warning to get it to work specialize indirect function calls copy code split code into separate files manually edit both input code and generated code
TAPENADE	generates code with syntax errors cannot handle indirect function calls generates incorrect derivative code gives wrong answer (with aliasing warning) to get it to work specialize indirect function calls manually edit both input code and generated

The State of the Art Regarding Closure Properties

ADIFOR m	miscomputes call graph confuses nesting with recursion cannot handle indirect function calls generates incorrect derivative code gives wrong answer without warning to get it to work specialize indirect function calls copy code split code into separate files manually edit both input code and generated code
TAPENADE	generates code with syntax errors cannot handle indirect function calls generates incorrect derivative code gives wrong answer (with aliasing warning) to get it to work specialize indirect function calls manually edit both input code and generated code

ADIC

The State of the Art Regarding Closure Properties

ADIC generates code with syntax errors

The State of the Art Regarding Closure Properties

The State of the Art Regarding Closure Properties

The State of the Art Regarding Closure Properties

```
ADIFOR miscomputes call graph
    confuses nesting with recursion
    cannot handle indirect function calls
    generates incorrect derivative code
    gives wrong answer without warning
    to get it to work
        specialize indirect function calls
        copy code
        split code into separate files
        manually edit both input code and generated code
TAPENADE generates code with syntax errors
        cannot handle indirect function calls
        generates incorrect derivative code
        gives wrong answer (with aliasing warning)
        to get it to work
        specialize indirect function calls
        manually edit both input code and generated code
ADIC generates code with syntax errors
    cannot transform its own output
FADBAD++ cannot take derivatives of arbitrary unmodified C++ programs
```


The State of the Art Regarding Closure Properties

```
ADIFOR miscomputes call graph
    confuses nesting with recursion
    cannot handle indirect function calls
    generates incorrect derivative code
    gives wrong answer without warning
    to get it to work
        specialize indirect function calls
        copy code
        split code into separate files
        manually edit both input code and generated code
TAPENADE generates code with syntax errors
        cannot handle indirect function calls
        generates incorrect derivative code
        gives wrong answer (with aliasing warning)
        to get it to work
        specialize indirect function calls
        manually edit both input code and generated code
ADIC generates code with syntax errors
    cannot transform its own output
FADBAD++ cannot take derivatives of arbitrary unmodified C + + programs
    to get it to work
        rewrite code using templates
```


Stalin ∇ vs C++ and Fortran

Language/Implementation

Example	Stalin ∇	FADBAD++	ADIFOR	TAPENADE
saddle	1.00	5.71	0.49	0.73
particle	1.00	30.07	0.85	1.76

Static Floating-Point Instruction Density

Language/Implementation

Example	STALIN ∇	FADBAD++	ADIFOR	TAPENADE
saddle	16.9%	1.3%	9.3%	7.8%
particle	20.9%	1.6%	7.0%	4.4%

Lambda the Ultimate Intermediate Language

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

Lambda the Ultimate Intermediate Language for $A D$

Steele, Jr., G. L. and Sussman, G. J. (1976). Lambda, the Ultimate Imperative, MIT AI memo 353.

$$
\vdots
$$
 |
 Marvin Lee Minsky
 Gerald Jay Sussman
 Guy Lewis Steele, Jr.

Something for Matthias Blume

$$
\left(\text { zero }\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { zero } v_{1}\right), \ldots\right\}, \ldots\right\rangle
$$

Something for Matthias Blume

(zero $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ zero $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (primal $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ primal $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$

Something for Matthias Blume

(zero $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ zero $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (primal $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ primal $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (tangent $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ tangent $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$

Something for Matthias Blume

(zero $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ zero $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (primal $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ primal $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (tangent $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ tangent $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ $\left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle$

Something for Matthias Blume

(zero $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ zero $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (primal $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ primal $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ (tangent $\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\right.\right.\right.$ tangent $\left.\left.\left.v_{1}\right), \ldots\right\}, \ldots\right\rangle$ $\left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle$
ditto for our entire AD basis (perturb, unperturb, bundle, sensitize, unsensitize, plus, *j, and *j-inverse)

Something for Matthias Blume

$$
\begin{aligned}
& \left(\text { zero }\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { zero } v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \text { (tangent } \left.\left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto \text { (tangent } v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \text { (j* } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle
\end{aligned}
$$

ditto for our entire AD basis (perturb, unperturb, bundle, sensitize, unsensitize, plus, *j, and *j-inverse)

$$
\left(\text { map-closure } f\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \ldots\right\rangle
$$

Siskind, J. M. and Pearlmutter, B. A. (2007). First-Class Nonstandard Interpretations by Opening Closures, Proceedings of the 34th Symposium on Principles of Programming Languages, 71-6.

Something for Robby Findler

$$
\left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle
$$

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \vec{e}\right\rangle
\end{aligned}
$$

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \stackrel{e}{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, e\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \left(* j-i n v e r s e\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{e}\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j \text {-inverse } v_{1}\right), \ldots\right\}, e\right\rangle
\end{aligned}
$$

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \stackrel{\rightharpoonup}{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, e\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \left(* j-i n v e r s e\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{e}\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j \text {-inverse } v_{1}\right), \ldots\right\}, e\right\rangle
\end{aligned}
$$

(map-closure-and-transform $\left.f \mathcal{T}\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=$ $\left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \mathcal{T}(e)\right\rangle$

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \stackrel{\rightharpoonup}{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, e\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \left(* j-i n v e r s e\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{e}\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j \text {-inverse } v_{1}\right), \ldots\right\}, e\right\rangle
\end{aligned}
$$

(map-closure-and-transform $\left.f \mathcal{T}\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=$ $\left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \mathcal{T}(e)\right\rangle$ But what is \mathcal{T} ?

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \vec{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, \stackrel{e}{e}\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \left(* j-i n v e r s e\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{ }\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j \text {-inverse } v_{1}\right), \ldots\right\}, e\right\rangle
\end{aligned}
$$

(map-closure-and-transform $\left.f \mathcal{T}\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=$ $\left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \mathcal{T}(e)\right\rangle$ But what is \mathcal{T} ?

- a procedural macro, defmacro

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \vec{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, \stackrel{e}{e}\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \text { (*j-inverse } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{ }\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j \text {-inverse } v_{1}\right), \ldots\right\}, e\right\rangle
\end{aligned}
$$

(map-closure-and-transform $\left.f \mathcal{T}\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=$ $\left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \mathcal{T}(e)\right\rangle$ But what is \mathcal{T} ?

- a procedural macro, defmacro
- a hygienic macro, syntax-rules, syntax-case, ...

Something for Robby Findler

$$
\begin{aligned}
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \ldots\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \ldots\right\rangle \\
& \left(j *\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(j * v_{1}\right), \ldots\right\}, \vec{e}\right\rangle \\
& \left(* j\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(* j v_{1}\right), \ldots\right\}, \stackrel{e}{e}\right\rangle \\
& \text { (primal } \left.\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \vec{e}\right\rangle\right)=\left\langle\left\{x_{1} \mapsto\left(\text { primal } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \left(* j-\text { inverse }\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, \stackrel{e}{ }\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(* j-\text { inverse } v_{1}\right), \ldots\right\}, e\right\rangle \\
& \text { (map-closure-and-transform } \left.f \mathcal{T}\left\langle\left\{x_{1} \mapsto v_{1}, \ldots\right\}, e\right\rangle\right)= \\
& \left\langle\left\{x_{1} \mapsto\left(f v_{1}\right), \ldots\right\}, \mathcal{T}(e)\right\rangle \text { But what is } \mathcal{T} \text { ? }
\end{aligned}
$$

- a procedural macro, defmacro
- a hygienic macro, syntax-rules, syntax-case, ...
- a rewrite system, PLT REDEX

Something for Dave MacQueen and John Reppy

```
zero:\tau 
perturb : }\tau->\overline{\tau
unperturb: }\overline{\tau}->
primal : }\vec{\tau}->
tangent : }\vec{\tau}->\vec{\tau
bundle :\tau\times\vec{\tau}->\vec{\tau}
j* :\tau 
sensitize:\tau }->\mp@subsup{}{}{\tau
unsensitize : }\tau\tau~
plus : 
*j:\tau 
* j-inverse : 
f:\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{}
(j* f) (j* x)
(j* f:\tau): \vec{\tau}

\section*{Something for Jean Utke}

TAPENADE 2.1 User's Guide (p. 72):

\section*{10. KNOWN PROBLEMS AND DEVELOPMENTS TO COME} 10.4 Pointers and dynamic allocation

For example, how should we handle a memory deallocation in the reverse mode? During the reverse sweep, the memory must be reallocated somehow, and the pointers must point back into this reallocated memory. Finding the more efficient way to handle this is still an open problem.
http://www-unix.mcs.anl.gov/~utke/OpenAD/:
4. Language-coverage and library handling in adjoint code
2. language concepts (e.g., array arithmetic, pointers and dynamic memory allocation, polymorphism):
Many language concepts, in particular those found in object-oriented languages, have never been considered in the context of automatic adjoint code generation. We are aware of several hard theoretical and technical problems that need to be=

\section*{Something else for Jean Utke}

Review 3
significance: \(2 / 5\) originality: \(2 / 5\)
The authors present the "inability to nest" as a "central limitation" that prevents current \(A D\) tools from being truly automatic. [...] What constitutes a "central limitation" is, however, a rather subjective criterion. There are other problems that are in my view much more critical to the practical use of \(A D\) tools. Take, for instance, adjoining parallelized models.

\section*{Dear Dr. Pearlmutter,}
[...] The problems with nesting transformations of the current Fortran/C - AD tools - contrary claims on their respective websites not withstanding - are a known fact but there nesting has not been a priority. [...] The suggested road map connecting vlad and stalingrad to other language front-ends is in our view not necessary. [...] It merely highlights the fact that after criticizing the other tools vlad and stalingrad cannot readily be used either to differentiate Fortran or C programs, do reverse mode with checkpointing, cross \(\equiv\)```

