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Leibnitz (1664) + Church (1941) = Siskind & Pearlmutter (2004)

Purdue–2004b June 15, 2004 9



✬

✫

✩
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Differential Calculus for Dummies

(in 6 slides)
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✬

✫

✩

✪

Notation

• x, y, x, f , g, h, p, x′, x1, [ ]

• comma, left associates

• juxtaposition, left associates

– function application

– function composition

– matrix-vector multiplication

– matrix-matrix multiplication

– scalar-scalar multiplication

–
∏
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✬

✫

✩

✪

Derivatives

d

dx
: f
︸︷︷︸

R→R

→ f ′

︸︷︷︸

R→R

d

dx
: (R → R) → (R → R)

D : (R → R) → (R → R)
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✬

✫

✩

✪

Partial Derivatives

∂

∂x
: f
︸︷︷︸

Rn→R

→ f ′

︸︷︷︸

Rn→R

∂

∂x
: (Rn → R) → (Rn → R)

Di : (Rn → R) → (Rn → R)
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✬

✫

✩

✪

Gradients

∇ f x = (D1 f x), . . . , (Dn f x)

∇ : (Rn → R) → (Rn → R
n)
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✬

✫

✩

✪

Jacobians

f : R
m → R

n

f : (Rm → R)n

(J f x)[i, j] = (∇ (f [i]))[j]

J : (Rm → R
n) → (Rm → R

m×n)
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✬

✫

✩

✪

Operators

D, ∇, and J are traditionally called operators .
A more modern term is higher-order functions .
Higher-order functions are common in mathematics, physics, and engineering:

summations, comprehensions, quantifications, optimizations, integrals,
convolutions, filters, edge detectors, Fourier transforms, differential
equations, Hamiltonians, . . .
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✬

✫

✩

✪

The Chain Rule

(f ◦ g) x = (g f) x = g (f x)

D (g f) x = (D g f x) (D f x)

J (g f) x = (J g f x) (J f x)
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✬

✫

✩

✪

Everything You Always Wanted to Know About the
Lambda Calculus∗

(in 7 slides)

∗But Were Afraid To Ask
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✬

✫

✩

✪

Church (1941)

It is, of course, not excluded that the range of arguments or range
of values of a function should consist wholly or partly of functions.
The derivative, as this notion appears in the elementary differential
calculus, is a familiar mathematical example of a function for which
both ranges consist of functions.
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✬

✫

✩

✪

Functional Programming

int f(int n)

{ int i, p = 1;

for (i = 1; i<n; i++)

{ p = p*i;}

return p;}

f n
△
= if n = 0

then 1
else n× (f (n− 1)) fi
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✬

✫

✩

✪

Higher-Order Functions

n∑

i=1

exp(i)

n∏

i=1

sin(i)

fold (i, a, f, g)
△
= if i = 0

then a

else fold ((i− 1), (g (a, (f i))), f, g) fi
fold (n, 0, exp,+)
fold (n, 1, sin,×)
n∑

i=1

2i+ 1

f i
△
= 2i+ 1

fold (n, 0, f,+)
fold (n, 0, (λi 2i+ 1),+)
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✬

✫

✩

✪

Closures

(λx 2x) 3 = 6

((λx λy x+ y) 3) 4 = 7

(λx λy x+ y) 3 = ?

(λx λy x+ y) 3 = 〈{x 7→ 3}, λy x+ y〉

λx λy x+ y

λ(x, y) x+ y
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✬

✫

✩

✪

Tail Recursion (Steele 1976)

f n
△
= if n = 0

then 1
else n× (f (n− 1)) fi

g (i, p)
△
= if i = 0

then p

else g ((i− 1), (p× i)) fi

f n
△
= g(n, 1)
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✬

✫

✩

✪

Continuations (Landin 1965, Reynolds 1972)

f x
△
= e1

g x
△
= e2

h x
△
= e3

p x
△
= h (g (f x))

f ′ (c, x)
△
= c e1

g′ (c, x)
△
= c e2

h′ (c, x)
△
= c e3

p′ (c, x)
△
= f ((λx1 g ((λx2 h (c, x2)), x1)), x)
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✬

✫

✩

✪

The Lambda Calculus

if e1 then e2 else e3 fi ❀ (((if e1) (λx e2)) (λx e3)) [ ]

e ::= x | e1 e2 | λx e
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✬

✫

✩

✪

Compositional Derivative Operators—I

fn · · · f1

J (fn · · · f1)

J (fn · · · f1) = λx

1∏

i=n







J fi





1∏

j=i−1

fj







 x





J (fn · · · f1) is not compositional in (J f1), . . . , (J fn).
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✬

✫

✩

✪

Compositional Derivative Operators—II

⇀
∇ f

△
= λ(x, x́) J f x x́

↼
∇ f

△
= λ(x, ỳ) (J f x)T ỳ

• x is a primal variable

• x́ is a forward adjoint variable

• x̀ is a reverse adjoint variable

The rows and columns of J f x can be computed as
↼
∇ f (x, e) and

⇀
∇ f (x, e)

for basis vectors e respectively.
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✬

✫

✩

✪

Compositional Derivative Operators—III

⇀
∇ (g f) = λ(x, x́)

⇀
∇ g ((f x), (

⇀
∇ f (x, x́)))

↼
∇ (g f) = λ(x, ỳ)

↼
∇ f (x, (

↼
∇ g ((f x), ỳ)))

One cannot compose
⇀
∇ f with

⇀
∇ g because the input and output of

⇀
∇ f are not

of the same type. Similarly for
↼
∇ f .
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✬

✫

✩

✪

Compositional Derivative Operators—IV

⇀
J f

△
= λ(x, x́) (f x), (

⇀
∇ f (x, x́))

↼
J f

△
= λ(x, x̃) (f x), (x̃ λỳ

↼
∇ f (x, ỳ))

• λỳ
↼
∇ f (x, ỳ) is a local backpropagator

• x̃ is an input backpropagator

• their composition as an output backpropagator
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✬

✫

✩

✪

Compositional Derivative Operators—V

Adjoint (x, x́) = x́

Backpropagator (x, x̃) = x̃

⇀
∇ f = λ(x, x́) Adjoint (

⇀
J (x, x́))

↼
∇ f = λ(x, ỳ) Backpropagator (

↼
J (x, I)) ỳ

⇀
J (g f) = (

⇀
J g) (

⇀
J f)

↼
J (g f) = (

↼
J g) (

↼
J f)

⇀
J (fn · · · f1) = (

⇀
J fn) · · · (

⇀
J f1)

↼
J (fn · · · f1) = (

↼
J fn) · · · (

↼
J f1)
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✬

✫

✩

✪

Traditional Forward-Mode AD—I

x1 = f1 x0 x1, x́1 =
⇀
J f1 (x0, x́0)

x2 = f2 x1 x2, x́2 =
⇀
J f2 (x1, x́1)

...
...

xn = fn xn−1 xn, x́n =
⇀
J fn (xn−1, x́n−1)
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✬

✫

✩

✪

Traditional Forward-Mode AD—II

xj = f xi xj , x́j = (f xi), ((D f xi)x́i)
xk = f (xi, xj) xk, x́k = (f (xi, xj)), ((D1 f (xi, xj) x́i)+

(D2 f (xi, xj) x́j))
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✬

✫

✩

✪

Traditional Reverse-Mode AD—I

x1 = f1 x0 x1, x̃1 =
↼
J f1 (x0, x̃0)

x2 = f2 x1 x2, x̃2 =
↼
J f2 (x1, x̃1)

...
...

xn = fn xn−1 xn, x̃n =
↼
J fn (xn−1, x̃n−1)

(x̃n I) x̀n
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✬

✫

✩

✪

Traditional Reverse-Mode AD—II

x1 = f1 x0 x1, x̃1 =
↼
J f1 (x0, x̃0)

x2 = f2 x1 x2, x̃2 =
↼
J f2 (x1, x̃1)

...
...

xn = fn xn−1 xn, x̃n =
↼
J fn (xn−1, x̃n−1)

x̀n−1 =
↼
∇ fn (xn, x̀n)

x̀n−2 =
↼
∇ fn−1 (xn−1, x̀n−1)

...

x̀0 =
↼
∇ f1 (x1, x̀1)
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✬

✫

✩

✪

Traditional Reverse-Mode AD—III

xj = f xi xj = f xi

x̀i = x̀i + (D f xi x̀j)
xk = f (xi, xj) xk = f (xi, xj)

x̀i = x̀i + (D1 f (xi, xj) x̀k)
x̀j = x̀j + (D2 f (xi, xj) x̀k)
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✬

✫

✩

✪

VLAD: Functional Language for AD—I

• Similar to Scheme.

• Only functional (side-effect free) constructs are supported.

• The only data types supported are the empty list, Booleans, real numbers,
pairs, and procedures that take one argument and return one result. Thus
vlad objects are all of the following type:

τ ::= null | boolean | R | τ1 × τ2 | τ1 → τ2

• Primitive procedures that take two arguments take them as a pair.

• Except that cons is curried.
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✬

✫

✩

✪

VLAD: Functional Language for AD—II

• We use e1, e2 as shorthand for (cons e1) e2.

• We allow lambda expressions to have tuples as parameters as shorthand for
the appropriate destructuring. For example:

λ(x1, (x2, x3)) . . . x2 . . . ❀ λx . . . (car (cdr x)) . . .

•
⇀
J ,

↼
J
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✬

✫

✩

✪

Sensitivity Types

null = null

boolean = null

R = R

τ1 × τ2 = τ1 × τ2

τ1 → τ2 = null
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✬

✫

✩

✪

The Type of
⇀
J

⇀
J : (τ1 → τ2) → ((τ1 × τ1) → (τ2 × τ2))
⇀
J : τ →

⇀
τ

null
⇀

= null

boolean
⇀

= boolean
⇀
R = R

τ1 × τ2
⇀

=
⇀
τ1 ×

⇀
τ2

τ1 → τ2
⇀

= (τ1 × τ1) → (τ2 × τ2)
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✬

✫

✩

✪

The Definition of
⇀
J on Non-Closures

⇀
J x = x

⇀
J (x1, x2) = (

⇀
J x1), (

⇀
J x2)

⇀
J f = λ(x, x́) (f x), (x́ (D f x))

⇀
J f = λ((x1, x2), (x́1, x́2))

(f (x1, x2)), ((x́1 (D1 f (x1, x2))) + (x́2 (D2 f (x1, x2))))

⇀
J f = λ(x, x́) (f x), [ ]

⇀
J f = λ((x1, x2), (x́1, x́2)) (f (x1, x2)), [ ]

⇀
J car = λ((x1, x2), (x́1, x́2)) x1, x́1

⇀
J cons = λ(x1, x́1) λ(x2, x́2) (x1, x2), (x́1, x́2)

Purdue–2004b June 15, 2004 42



✬

✫

✩

✪

The Definition of
⇀
J on Closures

⇀
J 〈{x1 7→ v1, . . . , xn 7→ vn}, λx e〉 = 〈{x1 7→

⇀
J v1, . . . , xn 7→

⇀
J vn}, λx e

⇀
〉

⇀x ❀ x when x is bound
⇀x ❀ x, (0 x) when x is free

e1 e2
⇀

❀ (car ⇀e1) ⇀e2

λx e
⇀

❀ (λx ⇀e ), [ ]

0 x
△
= if (real? x) then 0

elif (pair? x) then (0 (car x)), (0 (cdr x))
else [ ] fi
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✬

✫

✩

✪

The Type of
↼
J

↼
J : (τ1 → τ2) → ((τ1 × (τ1 → τ3)) → (τ2 × (τ2 → τ3)))
↼
J : τ →

↼
τ

↼
null = null

↼
boolean = boolean

↼
R = R

↼
τ1 × τ2 =

↼
τ1 ×

↼
τ2

↼
τ1 → τ2 = (τ1 × (τ1 → τ3)) → (τ2 × (τ2 → τ3))
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✬

✫

✩

✪

The Definition of
↼
J on Non-Closures

↼
J x = x

↼
J (x1, x2) = (

↼
J x1), (

↼
J x2)

↼
J f = λ(x, x̃) (f x), (x̃ (D f x))

↼
J f = λ((x1, x2), x̃)

(f (x1, x2)), (x̃ ((D1 f (x1, x2)), (D2 f (x1, x2))))

↼
J f = λ(x, x̃) (f x), λỳ 0 x

↼
J f = λ((x1, x2), x̃) (f (x1, x2)), λỳ 0 (x1, x2)

↼
J car = λ((x1, x2), x̃) x1, λỳ ỳ, (0 x2)

↼
J cons = λ(x1, x̃1)

(λ(x2, x̃2) (x1, x2), λỳ (x̃1 (car ỳ))⊕ (x̃2 (cdr ỳ))), λỳ x̃1 (0 x1)

x1 ⊕ x2

△
= if null? x1 then [ ]

elif real? x1 then x1 + x2

else ((car x1)⊕ (car x2)), ((cdr x1)⊕ (cdr x2)) fi
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✬

✫

✩

✪

The Definition of
↼
J on Closures

↼
J 〈{x1 7→ v1, . . . , xn 7→ vn}, λx e〉 = 〈{x1 7→

↼
J v1, . . . , xn 7→

↼
J vn},

↼
λx e〉

↼
x ❀ x when x is bound
↼
x ❀ x, λy (cdr x0) (0 (car x0)) when x is free

↼
e1 e2 ❀ (car ↼e1) ↼e2
↼
λx e ❀ (λx ↼e ), λy (cdr x0) (0 (car x0))
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✬

✫

✩

✪

Fanout—The Problem

λx0 let x1

△
= x0 + x0;

x2

△
= x1 + x1;
...

xn
△
= xn−1 + xn−1

in xn end

Purdue–2004b June 15, 2004 47



✬

✫

✩

✪

Fanout—One Solution

fan
△
= λf λx f (x, x)

λx x+ x+ x ❀ λx fan (λ(x1, x)fan (λ(x2, x3)x1 + x2 + x3) x) x

↼
J fan

△
= λ(f, f̃) (λ(x, x̃) let ŷ

△
= f ((x, x), I); y

△
= car ŷ; ỹ

△
= cdr ŷ

in y, λỳ let x̀
△
= ỹ ỳ

in x̃ ((car x̀)⊕ (cdr x̀)) end end),

λỳ f̃ 0 f
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✬

✫

✩

✪

Derivatives

D f
△
= λx cdr (

⇀
J f (x, 1))

D f
△
= λx (cdr (

↼
J f (x, I))) 1
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✬

✫

✩

✪

Roots using Newton-Raphson

Root (f, x, ǫ)
△
= let x′ △

= x− x
D f x

in if |x− x′| ≤ ǫ then x else Root (f, x′, ǫ) fi end
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✬

✫

✩

✪

Univariate Optimizer (Line Search)

Argmin (f, x, ǫ)
△
= Root ((D f), x, ǫ)
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✬

✫

✩

✪

Gradients

∇ f
△
= λx let n

△
= Length x

in Map ((λi cdr (
⇀
J f (x, (e (1, i, n))))), (ι n)) end

∇ f
△
= λx (cdr (

↼
J f (x, I))) 1
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✬

✫

✩

✪

Gradient Descent

GradientDescent (f, x, ǫ)
△
=

let g
△
= ∇ f x

in if ||g|| ≤ ǫ

then x

else GradientDescent (f, (x+ (Argmin ((λk f (x+ kg)), 0, ǫ)) g), ǫ)
fi end
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✬

✫

✩

✪

Function Inversion

f−1 △
= λy Root ((λx |(f x)− y|), x0, ǫ)

Purdue–2004b June 15, 2004 54



✬

✫

✩

✪

A Rational Agent

• The world is w : state× action → state

• Agent perception is pB : state → observation

• Agent reward is rB : observation → R

• Goal is to maximize rB(pB(w(s, a)))

• But agent doesn’t have s, w, pB , and rB

• Observation o = pB(s)

• Models wB , pBB , and rBB of w, pB , and rB respectively

Agent (wB , pBB , rBB , o)
△
= Argmax ((λa rBB (pBB (wB ((p−1

BB o), a)))), a0, ǫ)
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✬

✫

✩

✪

A Pair of Interacting Rational Agents
(von Neumann & Morgenstern 1944)

DoubleAgent (wA, wAB , pAA, pAB , pABB , rAA, rABB , o)
△
=

Argmax

( (λa rAA

( pAA

(wA ( (wA ((p−1

AA o), a)),
(Argmax

((λa′ rABB (pABB (wAB ((p−1

ABB (pAB (wA ((p−1

AA o), a)))), a′)))),
a0, ǫ)))))),

a0, ǫ)
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✬

✫

✩

✪

Carl Gauss

Christoph Gudermann

Karl Weierstrass

Hermann Schwarz

Leopold Fejér

John von Neumann
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✬

✫

✩

✪

Neural Nets
(Rumelhart, Hinton, & Williams 1986)

Neuron (w, x)
△
= Sigmoid (w · x)

NeuralNet (w, x)
△
= Neuron (w′′, . . .Neuron (w′, x′) . . .)

Error w
△
= ||[y1; . . . ; yn]−

[NeuralNet (w, x1); . . . ;NeuralNet (w, xn)]||

GradientDescent (Error, w0, ǫ)
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✬

✫

✩

✪

Supervised Machine Learning
(Function Approximation)

Error θ
△
= ||[y1; . . . ; yn]− [f (θ, x1); . . . ; f (θ, xn)]||

GradientDescent (Error, θ0, ǫ)
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✬

✫

✩

✪

Maximum Likelihood Estimation (Fisher 1921)

Argmax

((

λθ
∏

x∈X

P (x|θ)

)

, θ0, ǫ

)
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✬

✫

✩

✪

Engineering Design

PerformanceOf SplineControlPoints
△
=

let wing
△
= SplineToSurface SplineControlPoints;

airflow
△
= PDEsolver (wing,NavierStokes);

lift,drag
△
= SurfaceIntegral (wing,airflow, force);

performance
△
= DesignMetric (lift,drag, (weight wing))

in performance end

GradientDescent (PerformanceOf,SplineControlPoints0, ǫ)
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✬

✫

✩

✪

An Optimizing Compiler for VLAD

Stalin∇:

• polyvariant flow analysis (Shivers 1988)

• flow-directed lightweight closure conversion (Wand & Steckler 1994)

• flow-directed inlining

• compiling with continuations (Steele 1979, Appel 1992)

• unboxing

• partial evaluation
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✬

✫

✩

✪

Alonzo Church

Stephen Cole Kleene

Robert Lee Constable

Steven Stanley Muchnick

Uwe Frederik Pleban

Peter Lee

Olin Shivers
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✬

✫

✩

✪

Advantages—I

Functional programs represent the underlying mathematical notions more closely
than imperative programs.
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✬

✫

✩

✪

Advantages—II

Greater compositionality:

• root finders built on a derivative-taker

• line search built on root finders

• multivariate optimizers built on line search

• other multivariate optimizers (with identical APIs) build on Hessian-vector
multipliers
...
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✬

✫

✩

✪

Advantages—III

Greater modularity: by allowing the callee to specify the necessary AD, rather
than insisting that the caller provide appropriately transformed functions,
internals can be hidden and changed.
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✬

✫

✩

✪

Advantages—IV

It is straightforward to generate higher-order derivatives, i.e. derivatives of
derivatives.

Purdue–2004b June 15, 2004 67



✬

✫

✩

✪

Advantages—V

Differential forms become first-class higher-order functions that can be passed to
optimizers or PDE solvers as part of an API. This allow one to easily express
programming patterns, i.e. algorithm templates, that can be instantiated with
different components as fillers. For example, one can construct an algorithm that
needs an optimizer and leave the choice of optimizer unspecified, to be filled in
later by passing the particular optimizer as a function parameter.
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✬

✫

✩

✪

Advantages—VI

Gradients can even be taken through processes that themselves involve AD-based
optimization or PDE solution.
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✬

✫

✩

✪

Advantages—VII

In traditional AD formulations, the output of a reverse-mode transformation is a
‘tape’ that is a different kind of entity than user-written functions. It must be
interpreted or run-time compiled. In contrast, in our approach, user-written
functions, and the input and output of AD operators, are all the same kind of
entity. Standard compilation techniques for functional programs can eliminate
the need for interpretation or run-time compilation of derivatives and generate,
at compile-time, code for derivatives that is as efficient as code for the primal
calculation.
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