
✬

✫

✩

✪

Karl Gustav Jacob Jacobi

Friedrich Julius Richelot

Carl Gottfried Neumann

William Edward Story

Solomon Lefschetz

Albert William Tucker

Marvin Lee Minsky

✟
✟

✟
✟
✟

✟✟

❍
❍

❍
❍

❍
❍❍

Patrick Henry Winston

Robert C. Berwick

Jeffrey Mark Siskind

Scott Fahlman

David Touretzky

Barak Avrum Pearlmutter

Purdue–2004b June 15, 2004 1

✬

✫

✩

✪

Jonathan Eden Siskind

Purdue–2004b June 15, 2004 2

✬

✫

✩

✪

Algorithmic Differentiation of Functional Programs

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 3

✬

✫

✩

✪

Lambda: the Ultimate Calculus

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 4

✬

✫

✩

✪

Backpropagation through Functional Programs

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 5

✬

✫

✩

✪

Lambda: the Ultimate Neural Network

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 6

✬

✫

✩

✪

Symbolicism: the Ultimate Connectionism

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 7

✬

✫

✩

✪

Maybe the Brain Really Does Run Lisp After All

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

Electrical Engineering Building, Room 313E
465 Northwestern Avenue

West Lafayette IN 47907–2035 USA
voice: 765/496–3197
fax: 765/494–6440
qobi@purdue.edu

http://www.ece.purdue.edu/~qobi

June 15, 2004

Joint work with Barak Pearlmutter.

Purdue–2004b June 15, 2004 8

✬

✫

✩

✪

Leibnitz (1664) + Church (1941) = Siskind & Pearlmutter (2004)

Purdue–2004b June 15, 2004 9

✬

✫

✩

✪

Differential Calculus for Dummies

(in 6 slides)

Purdue–2004b June 15, 2004 10

✬

✫

✩

✪

Notation

• x, y, x, f , g, h, p, x′, x1, []

• comma, left associates

• juxtaposition, left associates

– function application

– function composition

– matrix-vector multiplication

– matrix-matrix multiplication

– scalar-scalar multiplication

–
∏

Purdue–2004b June 15, 2004 11

✬

✫

✩

✪

Derivatives

d

dx
: f
︸︷︷︸

R→R

→ f ′

︸︷︷︸

R→R

d

dx
: (R → R) → (R → R)

D : (R → R) → (R → R)

Purdue–2004b June 15, 2004 12

✬

✫

✩

✪

Partial Derivatives

∂

∂x
: f
︸︷︷︸

Rn→R

→ f ′

︸︷︷︸

Rn→R

∂

∂x
: (Rn → R) → (Rn → R)

Di : (Rn → R) → (Rn → R)

Purdue–2004b June 15, 2004 13

✬

✫

✩

✪

Gradients

∇ f x = (D1 f x), . . . , (Dn f x)

∇ : (Rn → R) → (Rn → R
n)

Purdue–2004b June 15, 2004 14

✬

✫

✩

✪

Jacobians

f : R
m → R

n

f : (Rm → R)n

(J f x)[i, j] = (∇ (f [i]))[j]

J : (Rm → R
n) → (Rm → R

m×n)

Purdue–2004b June 15, 2004 15

✬

✫

✩

✪

Operators

D, ∇, and J are traditionally called operators .
A more modern term is higher-order functions .
Higher-order functions are common in mathematics, physics, and engineering:

summations, comprehensions, quantifications, optimizations, integrals,
convolutions, filters, edge detectors, Fourier transforms, differential
equations, Hamiltonians, . . .

Purdue–2004b June 15, 2004 16

✬

✫

✩

✪

The Chain Rule

(f ◦ g) x = (g f) x = g (f x)

D (g f) x = (D g f x) (D f x)

J (g f) x = (J g f x) (J f x)

Purdue–2004b June 15, 2004 17

✬

✫

✩

✪

Everything You Always Wanted to Know About the
Lambda Calculus∗

(in 7 slides)

∗But Were Afraid To Ask

Purdue–2004b June 15, 2004 18

✬

✫

✩

✪

Church (1941)

It is, of course, not excluded that the range of arguments or range
of values of a function should consist wholly or partly of functions.
The derivative, as this notion appears in the elementary differential
calculus, is a familiar mathematical example of a function for which
both ranges consist of functions.

Purdue–2004b June 15, 2004 19

✬

✫

✩

✪

Gottfried Leibniz

Jacob Bernoulli

Johann Bernoulli

Leonhard Euler

Joseph Louis Lagrange

Simeon Poisson

Michel Chasles

Hubert Anson Newton

Eliakim Hastings Moore

Oswald Veblen

Alonzo Church

Purdue–2004b June 15, 2004 20

✬

✫

✩

✪

Functional Programming

int f(int n)

{ int i, p = 1;

for (i = 1; i<n; i++)

{ p = p*i;}

return p;}

f n
△
= if n = 0

then 1
else n× (f (n− 1)) fi

Purdue–2004b June 15, 2004 21

✬

✫

✩

✪

Higher-Order Functions

n∑

i=1

exp(i)

n∏

i=1

sin(i)

fold (i, a, f, g)
△
= if i = 0

then a

else fold ((i− 1), (g (a, (f i))), f, g) fi
fold (n, 0, exp,+)
fold (n, 1, sin,×)
n∑

i=1

2i+ 1

f i
△
= 2i+ 1

fold (n, 0, f,+)
fold (n, 0, (λi 2i+ 1),+)

Purdue–2004b June 15, 2004 22

✬

✫

✩

✪

Closures

(λx 2x) 3 = 6

((λx λy x+ y) 3) 4 = 7

(λx λy x+ y) 3 = ?

(λx λy x+ y) 3 = 〈{x 7→ 3}, λy x+ y〉

λx λy x+ y

λ(x, y) x+ y

Purdue–2004b June 15, 2004 23

✬

✫

✩

✪

Tail Recursion (Steele 1976)

f n
△
= if n = 0

then 1
else n× (f (n− 1)) fi

g (i, p)
△
= if i = 0

then p

else g ((i− 1), (p× i)) fi

f n
△
= g(n, 1)

Purdue–2004b June 15, 2004 24

✬

✫

✩

✪

Marvin Lee Minsky

Gerald Jay Sussman

Guy Lewis Steele, Jr.

Purdue–2004b June 15, 2004 25

✬

✫

✩

✪

Continuations (Landin 1965, Reynolds 1972)

f x
△
= e1

g x
△
= e2

h x
△
= e3

p x
△
= h (g (f x))

f ′ (c, x)
△
= c e1

g′ (c, x)
△
= c e2

h′ (c, x)
△
= c e3

p′ (c, x)
△
= f ((λx1 g ((λx2 h (c, x2)), x1)), x)

Purdue–2004b June 15, 2004 26

✬

✫

✩

✪

The Lambda Calculus

if e1 then e2 else e3 fi ❀ (((if e1) (λx e2)) (λx e3)) []

e ::= x | e1 e2 | λx e

Purdue–2004b June 15, 2004 27

✬

✫

✩

✪

Compositional Derivative Operators—I

fn · · · f1

J (fn · · · f1)

J (fn · · · f1) = λx

1∏

i=n







J fi





1∏

j=i−1

fj







 x





J (fn · · · f1) is not compositional in (J f1), . . . , (J fn).

Purdue–2004b June 15, 2004 28

✬

✫

✩

✪

Compositional Derivative Operators—II

⇀
∇ f

△
= λ(x, x́) J f x x́

↼
∇ f

△
= λ(x, ỳ) (J f x)T ỳ

• x is a primal variable

• x́ is a forward adjoint variable

• x̀ is a reverse adjoint variable

The rows and columns of J f x can be computed as
↼
∇ f (x, e) and

⇀
∇ f (x, e)

for basis vectors e respectively.

Purdue–2004b June 15, 2004 29

✬

✫

✩

✪

Compositional Derivative Operators—III

⇀
∇ (g f) = λ(x, x́)

⇀
∇ g ((f x), (

⇀
∇ f (x, x́)))

↼
∇ (g f) = λ(x, ỳ)

↼
∇ f (x, (

↼
∇ g ((f x), ỳ)))

One cannot compose
⇀
∇ f with

⇀
∇ g because the input and output of

⇀
∇ f are not

of the same type. Similarly for
↼
∇ f .

Purdue–2004b June 15, 2004 30

✬

✫

✩

✪

Compositional Derivative Operators—IV

⇀
J f

△
= λ(x, x́) (f x), (

⇀
∇ f (x, x́))

↼
J f

△
= λ(x, x̃) (f x), (x̃ λỳ

↼
∇ f (x, ỳ))

• λỳ
↼
∇ f (x, ỳ) is a local backpropagator

• x̃ is an input backpropagator

• their composition as an output backpropagator

Purdue–2004b June 15, 2004 31

✬

✫

✩

✪

Compositional Derivative Operators—V

Adjoint (x, x́) = x́

Backpropagator (x, x̃) = x̃

⇀
∇ f = λ(x, x́) Adjoint (

⇀
J (x, x́))

↼
∇ f = λ(x, ỳ) Backpropagator (

↼
J (x, I)) ỳ

⇀
J (g f) = (

⇀
J g) (

⇀
J f)

↼
J (g f) = (

↼
J g) (

↼
J f)

⇀
J (fn · · · f1) = (

⇀
J fn) · · · (

⇀
J f1)

↼
J (fn · · · f1) = (

↼
J fn) · · · (

↼
J f1)

Purdue–2004b June 15, 2004 32

✬

✫

✩

✪

Traditional Forward-Mode AD—I

x1 = f1 x0 x1, x́1 =
⇀
J f1 (x0, x́0)

x2 = f2 x1 x2, x́2 =
⇀
J f2 (x1, x́1)

...
...

xn = fn xn−1 xn, x́n =
⇀
J fn (xn−1, x́n−1)

Purdue–2004b June 15, 2004 33

✬

✫

✩

✪

Traditional Forward-Mode AD—II

xj = f xi xj , x́j = (f xi), ((D f xi)x́i)
xk = f (xi, xj) xk, x́k = (f (xi, xj)), ((D1 f (xi, xj) x́i)+

(D2 f (xi, xj) x́j))

Purdue–2004b June 15, 2004 34

✬

✫

✩

✪

Traditional Reverse-Mode AD—I

x1 = f1 x0 x1, x̃1 =
↼
J f1 (x0, x̃0)

x2 = f2 x1 x2, x̃2 =
↼
J f2 (x1, x̃1)

...
...

xn = fn xn−1 xn, x̃n =
↼
J fn (xn−1, x̃n−1)

(x̃n I) x̀n

Purdue–2004b June 15, 2004 35

✬

✫

✩

✪

Traditional Reverse-Mode AD—II

x1 = f1 x0 x1, x̃1 =
↼
J f1 (x0, x̃0)

x2 = f2 x1 x2, x̃2 =
↼
J f2 (x1, x̃1)

...
...

xn = fn xn−1 xn, x̃n =
↼
J fn (xn−1, x̃n−1)

x̀n−1 =
↼
∇ fn (xn, x̀n)

x̀n−2 =
↼
∇ fn−1 (xn−1, x̀n−1)

...

x̀0 =
↼
∇ f1 (x1, x̀1)

Purdue–2004b June 15, 2004 36

✬

✫

✩

✪

Traditional Reverse-Mode AD—III

xj = f xi xj = f xi

x̀i = x̀i + (D f xi x̀j)
xk = f (xi, xj) xk = f (xi, xj)

x̀i = x̀i + (D1 f (xi, xj) x̀k)
x̀j = x̀j + (D2 f (xi, xj) x̀k)

Purdue–2004b June 15, 2004 37

✬

✫

✩

✪

VLAD: Functional Language for AD—I

• Similar to Scheme.

• Only functional (side-effect free) constructs are supported.

• The only data types supported are the empty list, Booleans, real numbers,
pairs, and procedures that take one argument and return one result. Thus
vlad objects are all of the following type:

τ ::= null | boolean | R | τ1 × τ2 | τ1 → τ2

• Primitive procedures that take two arguments take them as a pair.

• Except that cons is curried.

Purdue–2004b June 15, 2004 38

✬

✫

✩

✪

VLAD: Functional Language for AD—II

• We use e1, e2 as shorthand for (cons e1) e2.

• We allow lambda expressions to have tuples as parameters as shorthand for
the appropriate destructuring. For example:

λ(x1, (x2, x3)) . . . x2 . . . ❀ λx . . . (car (cdr x)) . . .

•
⇀
J ,

↼
J

Purdue–2004b June 15, 2004 39

✬

✫

✩

✪

Sensitivity Types

null = null

boolean = null

R = R

τ1 × τ2 = τ1 × τ2

τ1 → τ2 = null

Purdue–2004b June 15, 2004 40

✬

✫

✩

✪

The Type of
⇀
J

⇀
J : (τ1 → τ2) → ((τ1 × τ1) → (τ2 × τ2))
⇀
J : τ →

⇀
τ

null
⇀

= null

boolean
⇀

= boolean
⇀
R = R

τ1 × τ2
⇀

=
⇀
τ1 ×

⇀
τ2

τ1 → τ2
⇀

= (τ1 × τ1) → (τ2 × τ2)

Purdue–2004b June 15, 2004 41

✬

✫

✩

✪

The Definition of
⇀
J on Non-Closures

⇀
J x = x

⇀
J (x1, x2) = (

⇀
J x1), (

⇀
J x2)

⇀
J f = λ(x, x́) (f x), (x́ (D f x))

⇀
J f = λ((x1, x2), (x́1, x́2))

(f (x1, x2)), ((x́1 (D1 f (x1, x2))) + (x́2 (D2 f (x1, x2))))

⇀
J f = λ(x, x́) (f x), []

⇀
J f = λ((x1, x2), (x́1, x́2)) (f (x1, x2)), []

⇀
J car = λ((x1, x2), (x́1, x́2)) x1, x́1

⇀
J cons = λ(x1, x́1) λ(x2, x́2) (x1, x2), (x́1, x́2)

Purdue–2004b June 15, 2004 42

✬

✫

✩

✪

The Definition of
⇀
J on Closures

⇀
J 〈{x1 7→ v1, . . . , xn 7→ vn}, λx e〉 = 〈{x1 7→

⇀
J v1, . . . , xn 7→

⇀
J vn}, λx e

⇀
〉

⇀x ❀ x when x is bound
⇀x ❀ x, (0 x) when x is free

e1 e2
⇀

❀ (car ⇀e1) ⇀e2

λx e
⇀

❀ (λx ⇀e), []

0 x
△
= if (real? x) then 0

elif (pair? x) then (0 (car x)), (0 (cdr x))
else [] fi

Purdue–2004b June 15, 2004 43

✬

✫

✩

✪

The Type of
↼
J

↼
J : (τ1 → τ2) → ((τ1 × (τ1 → τ3)) → (τ2 × (τ2 → τ3)))
↼
J : τ →

↼
τ

↼
null = null

↼
boolean = boolean

↼
R = R

↼
τ1 × τ2 =

↼
τ1 ×

↼
τ2

↼
τ1 → τ2 = (τ1 × (τ1 → τ3)) → (τ2 × (τ2 → τ3))

Purdue–2004b June 15, 2004 44

✬

✫

✩

✪

The Definition of
↼
J on Non-Closures

↼
J x = x

↼
J (x1, x2) = (

↼
J x1), (

↼
J x2)

↼
J f = λ(x, x̃) (f x), (x̃ (D f x))

↼
J f = λ((x1, x2), x̃)

(f (x1, x2)), (x̃ ((D1 f (x1, x2)), (D2 f (x1, x2))))

↼
J f = λ(x, x̃) (f x), λỳ 0 x

↼
J f = λ((x1, x2), x̃) (f (x1, x2)), λỳ 0 (x1, x2)

↼
J car = λ((x1, x2), x̃) x1, λỳ ỳ, (0 x2)

↼
J cons = λ(x1, x̃1)

(λ(x2, x̃2) (x1, x2), λỳ (x̃1 (car ỳ))⊕ (x̃2 (cdr ỳ))), λỳ x̃1 (0 x1)

x1 ⊕ x2

△
= if null? x1 then []

elif real? x1 then x1 + x2

else ((car x1)⊕ (car x2)), ((cdr x1)⊕ (cdr x2)) fi

Purdue–2004b June 15, 2004 45

✬

✫

✩

✪

The Definition of
↼
J on Closures

↼
J 〈{x1 7→ v1, . . . , xn 7→ vn}, λx e〉 = 〈{x1 7→

↼
J v1, . . . , xn 7→

↼
J vn},

↼
λx e〉

↼
x ❀ x when x is bound
↼
x ❀ x, λy (cdr x0) (0 (car x0)) when x is free

↼
e1 e2 ❀ (car ↼e1) ↼e2
↼
λx e ❀ (λx ↼e), λy (cdr x0) (0 (car x0))

Purdue–2004b June 15, 2004 46

✬

✫

✩

✪

Fanout—The Problem

λx0 let x1

△
= x0 + x0;

x2

△
= x1 + x1;
...

xn
△
= xn−1 + xn−1

in xn end

Purdue–2004b June 15, 2004 47

✬

✫

✩

✪

Fanout—One Solution

fan
△
= λf λx f (x, x)

λx x+ x+ x ❀ λx fan (λ(x1, x)fan (λ(x2, x3)x1 + x2 + x3) x) x

↼
J fan

△
= λ(f, f̃) (λ(x, x̃) let ŷ

△
= f ((x, x), I); y

△
= car ŷ; ỹ

△
= cdr ŷ

in y, λỳ let x̀
△
= ỹ ỳ

in x̃ ((car x̀)⊕ (cdr x̀)) end end),

λỳ f̃ 0 f

Purdue–2004b June 15, 2004 48

✬

✫

✩

✪

Derivatives

D f
△
= λx cdr (

⇀
J f (x, 1))

D f
△
= λx (cdr (

↼
J f (x, I))) 1

Purdue–2004b June 15, 2004 49

✬

✫

✩

✪

Roots using Newton-Raphson

Root (f, x, ǫ)
△
= let x′ △

= x− x
D f x

in if |x− x′| ≤ ǫ then x else Root (f, x′, ǫ) fi end

Purdue–2004b June 15, 2004 50

✬

✫

✩

✪

Univariate Optimizer (Line Search)

Argmin (f, x, ǫ)
△
= Root ((D f), x, ǫ)

Purdue–2004b June 15, 2004 51

✬

✫

✩

✪

Gradients

∇ f
△
= λx let n

△
= Length x

in Map ((λi cdr (
⇀
J f (x, (e (1, i, n))))), (ι n)) end

∇ f
△
= λx (cdr (

↼
J f (x, I))) 1

Purdue–2004b June 15, 2004 52

✬

✫

✩

✪

Gradient Descent

GradientDescent (f, x, ǫ)
△
=

let g
△
= ∇ f x

in if ||g|| ≤ ǫ

then x

else GradientDescent (f, (x+ (Argmin ((λk f (x+ kg)), 0, ǫ)) g), ǫ)
fi end

Purdue–2004b June 15, 2004 53

✬

✫

✩

✪

Function Inversion

f−1 △
= λy Root ((λx |(f x)− y|), x0, ǫ)

Purdue–2004b June 15, 2004 54

✬

✫

✩

✪

A Rational Agent

• The world is w : state× action → state

• Agent perception is pB : state → observation

• Agent reward is rB : observation → R

• Goal is to maximize rB(pB(w(s, a)))

• But agent doesn’t have s, w, pB , and rB

• Observation o = pB(s)

• Models wB , pBB , and rBB of w, pB , and rB respectively

Agent (wB , pBB , rBB , o)
△
= Argmax ((λa rBB (pBB (wB ((p−1

BB o), a)))), a0, ǫ)

Purdue–2004b June 15, 2004 55

✬

✫

✩

✪

A Pair of Interacting Rational Agents
(von Neumann & Morgenstern 1944)

DoubleAgent (wA, wAB , pAA, pAB , pABB , rAA, rABB , o)
△
=

Argmax

((λa rAA

(pAA

(wA ((wA ((p−1

AA o), a)),
(Argmax

((λa′ rABB (pABB (wAB ((p−1

ABB (pAB (wA ((p−1

AA o), a)))), a′)))),
a0, ǫ)))))),

a0, ǫ)

Purdue–2004b June 15, 2004 56

✬

✫

✩

✪

Carl Gauss

Christoph Gudermann

Karl Weierstrass

Hermann Schwarz

Leopold Fejér

John von Neumann

Purdue–2004b June 15, 2004 57

✬

✫

✩

✪

Neural Nets
(Rumelhart, Hinton, & Williams 1986)

Neuron (w, x)
△
= Sigmoid (w · x)

NeuralNet (w, x)
△
= Neuron (w′′, . . .Neuron (w′, x′) . . .)

Error w
△
= ||[y1; . . . ; yn]−

[NeuralNet (w, x1); . . . ;NeuralNet (w, xn)]||

GradientDescent (Error, w0, ǫ)

Purdue–2004b June 15, 2004 58

✬

✫

✩

✪

Supervised Machine Learning
(Function Approximation)

Error θ
△
= ||[y1; . . . ; yn]− [f (θ, x1); . . . ; f (θ, xn)]||

GradientDescent (Error, θ0, ǫ)

Purdue–2004b June 15, 2004 59

✬

✫

✩

✪

Maximum Likelihood Estimation (Fisher 1921)

Argmax

((

λθ
∏

x∈X

P (x|θ)

)

, θ0, ǫ

)

Purdue–2004b June 15, 2004 60

✬

✫

✩

✪

Engineering Design

PerformanceOf SplineControlPoints
△
=

let wing
△
= SplineToSurface SplineControlPoints;

airflow
△
= PDEsolver (wing,NavierStokes);

lift,drag
△
= SurfaceIntegral (wing,airflow, force);

performance
△
= DesignMetric (lift,drag, (weight wing))

in performance end

GradientDescent (PerformanceOf,SplineControlPoints0, ǫ)

Purdue–2004b June 15, 2004 61

✬

✫

✩

✪

An Optimizing Compiler for VLAD

Stalin∇:

• polyvariant flow analysis (Shivers 1988)

• flow-directed lightweight closure conversion (Wand & Steckler 1994)

• flow-directed inlining

• compiling with continuations (Steele 1979, Appel 1992)

• unboxing

• partial evaluation

Purdue–2004b June 15, 2004 62

✬

✫

✩

✪

Alonzo Church

Stephen Cole Kleene

Robert Lee Constable

Steven Stanley Muchnick

Uwe Frederik Pleban

Peter Lee

Olin Shivers

Purdue–2004b June 15, 2004 63

✬

✫

✩

✪

Advantages—I

Functional programs represent the underlying mathematical notions more closely
than imperative programs.

Purdue–2004b June 15, 2004 64

✬

✫

✩

✪

Advantages—II

Greater compositionality:

• root finders built on a derivative-taker

• line search built on root finders

• multivariate optimizers built on line search

• other multivariate optimizers (with identical APIs) build on Hessian-vector
multipliers
...

Purdue–2004b June 15, 2004 65

✬

✫

✩

✪

Advantages—III

Greater modularity: by allowing the callee to specify the necessary AD, rather
than insisting that the caller provide appropriately transformed functions,
internals can be hidden and changed.

Purdue–2004b June 15, 2004 66

✬

✫

✩

✪

Advantages—IV

It is straightforward to generate higher-order derivatives, i.e. derivatives of
derivatives.

Purdue–2004b June 15, 2004 67

✬

✫

✩

✪

Advantages—V

Differential forms become first-class higher-order functions that can be passed to
optimizers or PDE solvers as part of an API. This allow one to easily express
programming patterns, i.e. algorithm templates, that can be instantiated with
different components as fillers. For example, one can construct an algorithm that
needs an optimizer and leave the choice of optimizer unspecified, to be filled in
later by passing the particular optimizer as a function parameter.

Purdue–2004b June 15, 2004 68

✬

✫

✩

✪

Advantages—VI

Gradients can even be taken through processes that themselves involve AD-based
optimization or PDE solution.

Purdue–2004b June 15, 2004 69

✬

✫

✩

✪

Advantages—VII

In traditional AD formulations, the output of a reverse-mode transformation is a
‘tape’ that is a different kind of entity than user-written functions. It must be
interpreted or run-time compiled. In contrast, in our approach, user-written
functions, and the input and output of AD operators, are all the same kind of
entity. Standard compilation techniques for functional programs can eliminate
the need for interpretation or run-time compilation of derivatives and generate,
at compile-time, code for derivatives that is as efficient as code for the primal
calculation.

Purdue–2004b June 15, 2004 70

